Skip to main content

Innovation and the Role of Emerging Technologies

  • Reference work entry
  • First Online:
Technology-Enhanced Learning and the Virtual University

Part of the book series: University Development and Administration ((UDAA))

  • 174 Accesses

Abstract

This chapter discusses the role of digital technologies from the perspectives of how students learn and how to support their deep engagement with learning. We do this at two levels: course or unit level and learning activity level. We first overview some recently emerged course models of virtual technology-enabled learning in Australian universities. Then, we suggest that innovations at the course level should be complemented with innovations at the learning activity level. These innovations should be informed by theories and research on how people learn, and educational design should focus on learning processes that result in deep learning. Deep learning reflects on students thinking about or working through the materials at a deep level of cognitive engagement. We discuss four critical roles of digital technologies in students’ learning and give examples from current research in STEM education. These four roles are to (1) provide students with an opportunity to visualize invisible phenomena, (2) support students to generate ideas and construct knowledge, (3) enable students to gain new embodied experiences, and (4) empower students and teachers to co-construct authentic understanding. We conclude the chapter with an invitation to move toward more participatory forms of virtual universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambler, T., Solomonides, I., and Smallridge., A. 2021. Students’ experiences of a first-year blockmodel curriculum in higher education. The Curriculum Journal 32: 533–558. https://doi.org/10.1002/curj.103.

  • Archambault, L. M., and Barnett, J. H. 2010. Revisiting technological pedagogical content knowledge: Exploring the TPACK framework. Computers & Education 55 (4): 1656–1662.

    Article  Google Scholar 

  • Badia, A., Garcia, C., and Meneses, L. 2017. Approaches to teaching online: Exploring factors influencing teachers in a fully online university. British Journal of Educational Technology 48 (6): 1193–1207. https://doi.org/10.1111/bjet.12475.

  • Bayne, S. 2015. What’s the matter with ‘technology-enhanced learning’? Learning, Media and Technology 40 (1): 5–20. https://doi.org/10.1080/17439884.2014.915851.

    Article  Google Scholar 

  • Bayne, S., Evans, P., Ewins, R., Knox, J., and Lamb, J. 2020. The manifesto for teaching online. Cambridge, MA: MIT Press.

    Google Scholar 

  • Berney, S., Bétrancourt, M., Molinari, G., and Hoyek, N. 2015. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models. Anatomical Sciences Education 8 (5): 452–462. https://doi.org/10.1002/ase.1524.

    Article  Google Scholar 

  • Blikstein, P., and Wilensky, U. 2009. An atom is known by the company it keeps: A constructionist learning environment for materials science using agent-based modeling. International Journal of Computers for Mathematical Learning 14 (2): 81–119. https://doi.org/10.1007/s10758-009-9148-8.

    Article  Google Scholar 

  • Bouwer, M., and Guerrero, J. 2020. The use of branching scenarios to improve pharmacology content application. Paper presented at the IMPRS.

    Google Scholar 

  • Brucker, B., Scheiter, K., and Gerjets, P. 2014. Learning with dynamic and static visualizations: Realistic details only benefit learners with high visuospatial abilities. Computers in Human Behavior 36: 330–339. https://doi.org/10.1016/j.chb.2014.03.077.

    Article  Google Scholar 

  • Chi, M. T. H. 2021. Translating a theory of active learning: An attempt to close the research‐practice gap in Education. Topics in Cognitive Science 13(3): 1–23. https://doi.org/10.1111/tops.12539

  • Chi, M. T. H., and Wylie, R. 2014. The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist 49 (4): 219–243. https://doi.org/10.1080/00461520.2014.965823.

  • Committee, I. S. 2016. INACSL standards of best practice: SimulationSM simulation design. Clinical Simulation in Nursing 12: S5–S38.

    Article  Google Scholar 

  • de Koning, B. B., and Tabbers, H. K. 2011. Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review 23 (4): 501–521. https://doi.org/10.1007/s10648-011-9173-8.

    Article  Google Scholar 

  • Fazarro, D. E., Lawrence, H. R., and McWhorter, R. R. 2011. Going virtual: Delivering nanotechnology safety education on the web. Journal of STEM Tacher Ecation 48 (2): 38–62.

    Google Scholar 

  • Fiorella, L., and Mayer, R. E. 2018. What works and doesn’t work with instructional video. Computers in Human Behavior 89: 465–470. https://doi.org/10.1016/j.chb.2018.07.015.

    Article  Google Scholar 

  • Frederiksen, J. G., Sørensen, S. M. D., Konge, L., Svendsen, M. B. C., Nobel-Jørgensen, M., Bjerrum, F., and Andersen, S. A. W. 2020. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy 34 (3): 1244–1252. https://doi.org/10.1007/s00464-019-06887-8.

  • Goldstone, R. L., and Son, J. Y. 2005. The transfer of scientific principles using concrete and idealized simulations. The Journal of the Learning Sciences 14 (1): 69–110.

    Article  Google Scholar 

  • Goldstone, R. L., and Wilensky, U. 2008. Promoting transfer by grounding complex systems principles. Journal of the Learning Sciences 17 (4): 465–516. https://doi.org/10.1080/10508400802394898.

    Article  Google Scholar 

  • Goode, E., Nieuwoudt, J., and Roche, T. 2022. Does online engagement matter? The impact of interactive learning modules and synchronous class attendance on student achievement in an immersive delivery model. Australasian Journal of Educational Technology 38 (4): 76–94. https://doi.org/10.14742/ajet.7929

  • Goode, E., Roche, T., Wilson, E., and McKenzie, J. W. 2023. Implications of immersive scheduling for student achievement and feedback. Studies in Higher Education 1–14. https://doi.org/10.1080/03075079.2023.2184472

  • Holbert, K. E., Fletcher, J., Burr, P. A., and Obbard, E. G. 2020. PLuS Alliance nuclear engineering online course exchange program. Transactions of the American Nuclear Society 122: 43–45.

    Google Scholar 

  • Howard, C., Jordan, P., Di Eugenio, B., and Katz, S. 2017. Shifting the load: A peer dialogue agent that encourages its human collaborator to contribute more to problem solving. International Journal of Artificial Intelligence in Education 27 (1): 101–129. https://doi.org/10.1007/s40593-015-0071-y.

    Article  Google Scholar 

  • Jacobson, M. J., Levin, J. A., and Kapur, M. 2019. Education as a complex system: Conceptual and methodological implications. Educational Researcher 48 (2): 112–119. https://doi.org/10.3102/0013189X19826958.

    Article  Google Scholar 

  • Jacobson, M. J., Goldwater, M., Markauskaite, L., Lai, P. K., Kapur, M., Roberts, G., and Hilton, C. 2020. Schema abstraction with productive failure and analogical comparison: Learning designs for far across domain transfer. Learning and Instruction 65. https://doi.org/10.1016/j.learninstruc.2019.101222.

  • Kirschner, P. A., and Stoyanov, S. 2020. Educating youth for nonexistent/not yet existing professions. Educational Policy 34 (3): 477–517. https://doi.org/10.1177/0895904818802086.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., and Clark, R. E. 2006. Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist 41 (2): 75–86. https://doi.org/10.1207/s15326985ep4102_1.

    Article  Google Scholar 

  • Lai, P. K., Jacobson, M. J., and Markauskaite, L. 2016. Agent-based models versus video-based visualisation to learn nanoscience concepts: An embodied cognition perspective. Paper presented at the 2016 annual meeting of the American Educational Research Association, Washington DC.

    Google Scholar 

  • Lai, P. K., Portolese, A., and Jacobson, M. J. 2017. Does sequence matter? Productive failure and designing online authentic learning for process engineering. British Journal of Educational Technology 48 (6): 1217–1227. https://doi.org/10.1111/bjet.12492.

    Article  Google Scholar 

  • Lai, P. K., Jacobson, M. J., and Goldwater, M. 2018. Learning nanoscience concepts through a nanoscale experience. Paper presented at the 13th International Conference of the Learning Sciences, London, UK.

    Google Scholar 

  • Levy, S. T., and Wilensky, U. 2009. Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology 18 (3): 224–242.

    Article  Google Scholar 

  • Lindgren, R. 2012. Generating a learning stance through perspective-taking in a virtual environment. Computers in Human Behavior 28 (4): 1130–1139. https://doi.org/10.1016/j.chb.2012.01.021.

    Article  Google Scholar 

  • Loton, D., Stein, C., Parker, P., and Weaven, M. 2020. Introducing block mode to first-year university students: A natural experiment on satisfaction and performance. Studies in Higher Education 47: 1–24.

    Google Scholar 

  • Makransky, G., Terkildsen, T. S. and Mayer, R. E. 2019. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction 60: 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007.

    Article  Google Scholar 

  • Mayer, R. E., ed. 2005. The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., Fiorella, L., and Stull, A. 2020. Five ways to increase the effectiveness of instructional video. Educational Technology Research and Development 68 (3): 837–852. https://doi.org/10.1007/s11423-020-09749-6.

    Article  Google Scholar 

  • Mccluskey, T., Smallridge, A., Weldon, J., Loton, D., Samarawickrema, G., and Cleary, K. 2020. Building on the VU Block foundations: Results from the inaugural first year cohort. Paper presented at the 42nd HERDSA annual international conference, Auckland, New Zealand.

    Google Scholar 

  • McWhorter, R. R., and Lindhjem, K. A. 2013. Virtual learning environments: How they can benefit nanotechnology safety education. IEEE Nanotechnology Magazine 7 (2): 15–17.

    Article  Google Scholar 

  • Menekse, M., and Chi, M. T. H. 2019. The role of collaborative interactions versus individual construction on students’ learning of engineering concepts. European Journal of Engineering Education 44 (5): 702–725.

    Article  Google Scholar 

  • Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O. M., Cifuentes, L., and Davis, T. J. 2012. The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education 59 (2): 551–568.

    Article  Google Scholar 

  • Mikropoulos, T. A., and Natsis, A. 2011. Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education 56 (3): 769–780.

    Article  Google Scholar 

  • Mishra, P., and Koehler. M. J. 2006. Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record 108 (6): 1017–1054.

    Google Scholar 

  • Mishra, P., Koehler, M. J., and Henriksen, D. 2011. The seven trans-disciplinary habits of mind: Extending the TPACK framework towards 21st century learning. Educational Technology 51(2): 22–28.

    Google Scholar 

  • Noetel, M., Griffith, S., Delaney, O., Sanders, T., Parker, P., del Pozo Cruz, B., and Lonsdale, C. 2021. Video improves learning in higher education: A systematic review. Review of Educational Research 91 (2): 204–236. https://doi.org/10.3102/0034654321990713.

    Article  Google Scholar 

  • Parong, J., and Mayer, R. E. 2018. Learning science in immersive virtual reality. Journal of Educational Psychology 110 (6): 785–797. https://doi.org/10.1037/edu0000241.

    Article  Google Scholar 

  • Pasklinsky, N., Graham-Perel, A., Villacarlos-Philip, P., Slaka-Vella, M., and Tilley, C. P. 2021. Real-time decision-making in chronic illness branching simulation. Mhealth 7: 14.

    Article  Google Scholar 

  • Peng, X., Isaac, B., and Wilkins, R. T. 2012. Development of nanoscale virtual reality simulations for the teaching of nanotechnology. Paper presented at the 119th American Society for Engineering Education, San Antonio.

    Google Scholar 

  • Popenici, S. A., and Kerr, S. 2017. Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning 12 (1): 1–13. https://doi.org/10.1186/s41039-017-0062-8.

    Article  Google Scholar 

  • Rapp, D. N. 2005. Mental models: Theoretical issues for visualizations in science education. In Visualization in science education, ed. J. K. Gilbert, 43–60. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/1-4020-3613-2_4.

  • Samarawickrema, G., and Cleary, K. 2021. Block mode study: Opportunities and challenges for a new generation of learners in an Australian university. Student Success 12 (1): 13–23.

    Article  Google Scholar 

  • Schönborn, K. J., Höst, G. E., and Palmerius, K. E. L. 2016. Nano education with interactive visualization. Nano Today 492: 1–4. https://doi.org/10.1016/j.nantod.2015.10.006.

    Article  Google Scholar 

  • Schwartz, D. L., and Bransford, J. D. 1998. A time for telling. Cognition and Instruction 16 (4): 475–522. https://doi.org/10.2307/3233709.

    Article  Google Scholar 

  • Sejzi, A. A., Aris, B., and Yahya, N. 2012. The phenomenon of virtual university in new age: Trends and changes. Procedia-Social and Behavioral Sciences 56: 565–572.

    Article  Google Scholar 

  • Sengupta, P., and Wilensky, U. 2009. Learning electricity with NIELS: Thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning 14 (1): 21–50. https://doi.org/10.1007/s10758-009-9144-z.

    Article  Google Scholar 

  • Shabani, R., Massi, L., Zhai, L., Seal, S., and Cho. H. J. 2011. Classroom modules for nanotechnology undergraduate education: Development, implementation and evaluation. European Journal of Engineering Education 36 (2): 199–210. https://doi.org/10.1080/03043797.2011.573536.

  • Skulmowski, A., and Rey, G. D. 2020. The realism paradox: Realism can act as a form of signaling despite being associated with cognitive load. Human Behavior and Emerging Technologies 2 (3): 251–258. https://doi.org/10.1002/hbe2.190.

    Article  Google Scholar 

  • Skulmowski, A., and Rey, G. D. 2021. Realism as a retrieval cue: Evidence for concreteness-specific effects of realistic, schematic, and verbal components of visualizations on learning and testing. Human Behavior and Emerging Technologies 3 (2). https://doi.org/10.1002/hbe2.209.

  • Skulmowski, A., and Xu, K. M. 2021. Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educational Psychology Review 1–26. https://doi.org/10.1007/s10648-021-09624-7.

  • Suoranta, J., Teräs, M., Teräs, H., Jandrić, P., Ledger, S., Macgilchrist, F., and Prinsloo, P. 2021. Speculative social science fiction of digitalization in higher education: From what is to what could be. Postdigital Science and Education 1–13. https://doi.org/10.1007/s42438-021-00260-6.

  • Sweeney, E. M., Beger, A. W., and Reid, L. 2021. Google Jamboard for virtual anatomy education. The Clinical Teacher 1–7. https://doi.org/10.1111/tct.13389.

  • Trede, F., Markauskaite, L., McEwen, C., and Macfarlane, S. 2019. Education for practice in a hybrid space: Enhancing professional learning with mobile technology. Singagore: Springer.

    Google Scholar 

  • Vermunt, J. D., and Donche, V. 2017. A learning patterns perspective on student learning in higher education: State of the art and moving forward. Educational Psychology Review 29 (2): 269–299. https://doi.org/10.1007/s10648-017-9414-6.

    Article  Google Scholar 

  • Vygotsky, L. S. 1978. Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wang, M., Cheng, B., Chen, J., Mercer, N., and Kirschner, P. A. 2017. The use of web-based collaborative concept mapping to support group learning and interaction in an online environment. The Internet and Higher Education 34: 28–40. https://doi.org/10.1016/j.iheduc.2017.04.003.

    Article  Google Scholar 

  • Wekerle, C., Daumiller, M., and Kollar, I. 2020. Using digital technology to promote higher education learning: The importance of different learning activities and their relations to learning outcomes. Journal of Research on Technology in Education 1–17. https://doi.org/10.1080/15391523.2020.1799455.

  • White, M. 1982. Distance education in Australian higher education – A history. Distance Education 3 (2): 255–278. https://doi.org/10.1080/0158791820030207.

    Article  Google Scholar 

  • Wilensky, U. 1999. NetLogo. Evanston: Center for Connected Learning and Computer-Based Modeling. Northwestern University.

    Google Scholar 

  • Wilensky, U., and Rand, W. 2015. An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. Cambridge, MA: MIT Press.

    Google Scholar 

  • Xie, C., and Lee, H. 2012. A visual approach to nanotechnology education. International Journal of Engineering Education 28 (5): 1006–1018.

    Google Scholar 

  • Xie, C., and Pallant. A. 2011. The molecular workbench software: An innovative dynamic modeling tool for nanoscience education. In Models and modeling, models and modeling in science education, ed. M. S. Khine and I. M. Saleh, vol. 6, 121–139. New York: Springer.

    Google Scholar 

  • Zawacki-Richter, O., Marín, V. I., Bond, M., and Gouverneur, F. 2019. Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education 16 (1): 1–27. https://doi.org/10.1186/s41239-019-0171-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polly K. Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lai, P.K., Markauskaite, L. (2023). Innovation and the Role of Emerging Technologies. In: Sankey, M.D., Huijser, H., Fitzgerald, R. (eds) Technology-Enhanced Learning and the Virtual University. University Development and Administration. Springer, Singapore. https://doi.org/10.1007/978-981-99-4170-4_7

Download citation

Publish with us

Policies and ethics