Skip to main content

Green Nanotechnology: A Roadmap to Long-Term Applications in Biomedicine, Agriculture, Food, Green Buildings, Coatings, and Textile Sectors

  • Chapter
  • First Online:
Nanomaterials: The Building Blocks of Modern Technology

Abstract

As the result of the growing world population, the availability of resources is decreasing. Creating new non-polluting technologies is essential for the long-term prosperity of human society. Eco-friendly and sustainable technologies can be developed with nanotechnology, which will benefit humans and the environment. In green nanotechnology (biosynthesis), nanomaterials and nanoparticles are formed through biogenesis. Biomedical, nutrition, environmental remediation, coating, textile, and agricultural fields are some of the many applications of green nanotechnology. Many regulatory processes rely on green nanotechnology due to its small size. Better biological diagnosis, better quality of food, agriculture input reductions, better absorption of soil nanoscale nutrients, environmental cleanliness, and clean energy supply are some of the many potential benefits of green nanotechnology. Green nanoscience and technology can address current and future problems in the biomedical and food industries as well as society. These include issues of sustainability, sensitivity, and human welfare. The areas discussed in this chapter include biomedical, food, environmental remediation, coatings, textiles, and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullaeva Z (2017) Nanomaterials for clothing and textile products. In: Nanomaterials in daily life. Springer, Cham, pp 111–132

    Google Scholar 

  2. Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  3. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122(2–4):121–142

    Article  CAS  Google Scholar 

  4. Afzali A, Maghsoodlou S, Ciocoiu M, Maamir S (2016) Engineering nanotextiles: design of textile products. In: Nanostructured polymer blends and composites in textiles, pp 1–40

    Google Scholar 

  5. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  Google Scholar 

  6. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602

    Article  CAS  Google Scholar 

  7. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  CAS  Google Scholar 

  8. Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes. Pearson Education

    Google Scholar 

  9. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Alothman ZA, Alshehri SM (2016) Synthesis and characterization of Fe3O4@ TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv 6(27):22679–22689

    Article  CAS  Google Scholar 

  10. Anandan M, Poorani G, Boomi P, Varunkumar K, Anand K, Chuturgoon AA, Saravanan M, Prabu HG (2019) Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 80:80–88

    Article  CAS  Google Scholar 

  11. Anastas PT, Warner JC (1998a) Green: chemistry. In: Frontiers. Oxford University Press, New York

    Google Scholar 

  12. Anastas PT, Warner JC (1998) Principles of green chemistry. Green chemistry: theory and practice. Oxford University Press, New York, p 29

    Google Scholar 

  13. Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) JEM spotlight: applications of advanced nanomaterials for environmental monitoring. J Environ Monit 11(1):27–40

    Article  CAS  Google Scholar 

  14. Awual MR, Eldesoky GE, Yaita T, Naushad M, Shiwaku H, AlOthman ZA, Suzuki S (2015) Schiff based ligand containing nano-composite adsorbent for optical copper (II) ions removal from aqueous solutions. Chem Eng J 279:639–647

    Article  CAS  Google Scholar 

  15. Aziz F, Ismail AF (2015) Spray coating methods for polymer solar cells fabrication: a review. Mater Sci Semicond Process 39:416–425

    Article  CAS  Google Scholar 

  16. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  Google Scholar 

  17. Baeumner A (2004) Nanosensors identify pathogens in food. Food Technol (Chicago) 58(8):51–55

    CAS  Google Scholar 

  18. Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J Nanopart Res 9(1):11–22

    Article  Google Scholar 

  19. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    Article  CAS  Google Scholar 

  20. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8(3):20170056

    Article  Google Scholar 

  21. Banerjee B (2019) Rubber nanocomposites and nanotextiles: perspectives in automobile technologies. Walter de Gruyter GmbH & Co KG

    Google Scholar 

  22. Bardos P, Bone B, Černík M, Elliott DW, Jones S, Merly C (2015) Nanoremediation and international environmental restoration markets. Remediat J 25(2):83–94

    Article  Google Scholar 

  23. Bashari A, Shakeri M, Shirvan AR, Najafabadi SA (2018) Functional finishing of textiles via nanomaterials. In: Nanomaterials in the wet processing of textiles, pp 1–70

    Google Scholar 

  24. Bassiri-Gharb N, Bastani Y, Bernal A (2014) Chemical solution growth of ferroelectric oxide thin films and nanostructures. Chem Soc Rev 43(7):2125–2140

    Article  CAS  Google Scholar 

  25. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  26. Berti L, Burley GA (2008) Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nanotechnol 3(2):81–87

    Article  CAS  Google Scholar 

  27. Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf, B 47(2):160–164

    Article  CAS  Google Scholar 

  28. Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) BioMEMS and nanotechnology-based approaches for rapid detection of biological entities. J Rapid Methods Autom Microbiol 15(1):1–32

    Article  CAS  Google Scholar 

  29. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. Adv Appl Through Fungal Nanobiotechnol 2016:307–319

    Article  Google Scholar 

  30. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391(7):2469–2495

    Article  CAS  Google Scholar 

  31. Brody AL (2003) ”Nano, nano” food packaging technology-packaging. Food Technol-Chicago 57(12):52–54

    Google Scholar 

  32. Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60:92–94

    Google Scholar 

  33. Brody AL (2006) Food packaging climbs to the summit. Food Technol 60:73–75

    Google Scholar 

  34. Canel C (2006) Micro and nanotechnologies for food safety and quality applications. MNE 6:219–225

    Google Scholar 

  35. Cao CF, Wang PH, Zhang JW, Guo KY, Li Y, Xia QQ, Zhang GD, Zhao L, Chen H, Wang L, Gao JF (2020) One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem Eng J 393:124724

    Article  CAS  Google Scholar 

  36. Cao CF, Liu WJ, Xu H, Yu KX, Gong LX, Guo BF, Li YT, Feng XL, Lv LY, Pan HT, Zhao L (2021) Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. J Mater Sci Technol 85:194–204

    Article  CAS  Google Scholar 

  37. Cao CF, Yu B, Chen ZY, Qu YX, Li YT, Shi YQ, Ma ZW, Sun FN, Pan QH, Tang LC, Song P (2022) Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire Warning. Nano-micro Lett 14(1):1–8

    Article  Google Scholar 

  38. Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy JO, Spevak W, Stevens RC (1996) A ‘litmus test’ for molecular recognition using artificial membranes. Chem Biol 3(2):113–120

    Article  CAS  Google Scholar 

  39. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  40. Che Marzuki NH, Wahab RA, Abdul Hamid M (2019) An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 33(1):779–797

    Google Scholar 

  41. Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283

    Article  CAS  Google Scholar 

  42. Cheng K, Sano M, Jenkins CH, Zhang G, Vernekohl D, Zhao W, Wei C, Zhang Y, Zhang Z, Liu Y, Cheng Z (2018) Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano 12(5):4946–4958

    Article  CAS  Google Scholar 

  43. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

  44. Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1(1):1–8

    Article  CAS  Google Scholar 

  45. Constable DJ, Curzons AD, Cunningham VL (2002) Metrics to ‘green’chemistry-which are the best? Green Chem 4(6):521–527

    Article  CAS  Google Scholar 

  46. Cottrell M (2014) Guide to the LEED Green Associate V4 exam. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  47. Daraee H, Pourhassanmoghadam M, Akbarzadeh A, Zarghami N, Rahmati-Yamchi M (2016) Gold nanoparticle–oligonucleotide conjugate to detect the sequence of lung cancer biomarker. Artif Cells Nanomed Biotechnol 44(6):1417–1423

    Google Scholar 

  48. Darwesh OM, Ali SS, Matter IA, Elsamahy T (2021) Nanotextiles waste management: controlling of release and remediation of wastes. In: Nanosensors and nanodevices for smart multifunctional textiles. Elsevier, pp 267–286

    Google Scholar 

  49. De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76(4):1082–1087

    Article  Google Scholar 

  50. Deif AM (2011) A system model for green manufacturing. J Clean Prod 19(14):1553–1559

    Article  Google Scholar 

  51. Demirdoven J (2012a) Nanotechnology enabling BIM for facility owners. In: Presentation for Ecobuild America 2012 conference, Washington, DC

    Google Scholar 

  52. Demirdoven J (2012b) Nanotechnology applications in construction. In: Presentation for CAEE seminar series. Illinois Institute of Technology, Chicago

    Google Scholar 

  53. Demirdoven J, Karacar P (2013) Nanotechnology applications enabling green buildings and their effects on architectural design. In: Proceedings of the eighth international Sinan symposium: awareness. Trakya University, Edirne

    Google Scholar 

  54. Demirdoven JB, Karacar P (2015) Green nanomaterials with examples of applications. In: GreenAge symposium. Mimar Sinan Fine Arts University Faculty of Architecture, Istanbul, Turkey

    Google Scholar 

  55. de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  Google Scholar 

  56. Detty MR, Ciriminna R, Bright FV, Pagliaro M (2014) Environmentally benign sol–gel antifouling and foul-releasing coatings. Acc Chem Res 47(2):678–687

    Article  CAS  Google Scholar 

  57. Diallo M, Brinker CJ (2011) Nanotechnology for sustainability: environment, water, food, minerals, and climate. In: Nanotechnology research directions for societal needs in 2020. Springer, Dordrecht, pp 221–259

    Google Scholar 

  58. Diallo MS, Fromer NA, Jhon MS (2013) Nanotechnology for sustainable development: retrospective and outlook. Nanotechnology for sustainable development. Springer, Cham, pp 1–16

    Google Scholar 

  59. Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54(9):889–904

    Article  CAS  Google Scholar 

  60. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  61. Dong C, Lu L (2019) Enhancing the dehumidification efficiency of solar-assisted liquid desiccant air dehumidifiers using nanoscale TiO2 super-hydrophilic coating. Energy Procedia 158:5765–5769

    Article  CAS  Google Scholar 

  62. Dornfeld D, Yuan C, Diaz N, Zhang T, Vijayaraghavan A (2013) Introduction to green manufacturing. Green manufacturing. Springer, Boston, pp 1–23

    Chapter  Google Scholar 

  63. dos Santos OA, Backx BP (2020) Green Nanotechnology: the influence of intermolecular and supramolecular interactions. J Nanotechnol Nanomater 1(3):104–108

    Google Scholar 

  64. Doubrovsky VA, Yanina IY, Tuchin VV (2011) Inhomogeneity of photo-induced fat cell lipolysis. In: Saratov fall meeting 2010: optical technologies in biophysics and medicine XII 2011, vol 7999. SPIE, pp 145–153

    Google Scholar 

  65. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5

    Article  CAS  Google Scholar 

  66. Duarah SA, Pujari KU, Durai RD, Narayanan VH (2016) Nanotechnology-based cosmeceuticals: a review. Int J Appl Pharm 8(1):8–12

    CAS  Google Scholar 

  67. Dureja H, Kaushik D, Gupta M, Kumar V, Lather V (2005) Cosmeceuticals: an emerging concept. Indian J Pharmacol 37(3):155

    Article  CAS  Google Scholar 

  68. Ehrman A, Nguyen TA, Tri PN (2020) Nanosensors and nanodevices for smart multifunctional textiles. Elsevier

    Google Scholar 

  69. El-Naggar ME, Shaarawy S, Hebeish AA (2018) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohyd Polym 181:307–316

    Article  CAS  Google Scholar 

  70. Elsayed EM, Attia NF, Alshehri LA (2020) Innovative flame retardant and antibacterial fabrics coating based on inorganic nanotubes. Chem Select 5(10):2961–2965

    CAS  Google Scholar 

  71. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22(12):2163–2173

    Article  CAS  Google Scholar 

  72. Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:892894

    Article  Google Scholar 

  73. Felton LA (2007) Characterization of coating systems. AAPS PharmSciTech 8(4):258–266

    Article  Google Scholar 

  74. Ferraris M, Perero S, Miola M, Ferraris S, Gautier G, Maina G, Fucale G, Verne E (2010) Chemical, mechanical, and antibacterial properties of silver nanocluster–silica composite coatings obtained by sputtering. Adv Eng Mater 12(7):B276–B282

    Article  Google Scholar 

  75. Fletcher A (2006) Nanotech food conference targets future opportunities. Available at www.foodproductiondaily.com

  76. Floros JD, Newsome R, Fisher W, Barbosa‐Cánovas GV, Chen H, Dunne CP, German JB, Hall RL, Heldman DR, Karwe MV, Knabel SJ (2010) Feeding the world today and tomorrow: the importance of food science and technology: an IFT scientific review. Comprehen Rev Food Sci Food Saf 9(5):572–599

    Google Scholar 

  77. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 2016:20

    Google Scholar 

  78. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18(36):365709

    Article  Google Scholar 

  79. Fukui H (2018) Development of new cosmetics based on nanoparticles. In: Nanoparticle technology handbook. Elsevier, pp 399–405

    Google Scholar 

  80. Gadkari RR, Ali SW, Joshi M, Rajendran S, Das A, Alagirusamy R (2020) Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric. Int J Biol Macromol 162:548–560

    Article  CAS  Google Scholar 

  81. Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 2022:2100698

    Article  Google Scholar 

  82. García M, Aleixandre M, Gutiérrez J, Horrillo MC (2006) Electronic nose for wine discrimination. Sens Actuators, B Chem 113(2):911–916

    Article  Google Scholar 

  83. Gautam A, Singh D, Vijayaraghavan R (2011) Dermal exposure of nanoparticles: an understanding. J Cell Tissue Res 11(1):2703–2708

    Google Scholar 

  84. Gautam YK, Sharma K, Tyagi S, Kumar A, Singh BP (2022) Applications of green nanomaterials in coatings. In: Green nanomaterials for industrial applications. Elsevier, pp 107–152

    Google Scholar 

  85. Gil-Díaz M, Diez-Pascual S, González A, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC (2016) A nanoremediation strategy for the recovery of an as-polluted soil. Chemosphere 149:137–145

    Article  Google Scholar 

  86. Glavic P, Lukman R (2007) Review of sustainability terms and their definitions. J Clean Prod 15(18):1875–1885

    Article  Google Scholar 

  87. Gokarneshan N, Chandrasekar PT, Suvitha L (2017) Advances in nanotextile finishes—an approach towards sustainability. Text Cloth Sustain 1–56

    Google Scholar 

  88. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E (1999) Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release 57(3):259–268

    Google Scholar 

  89. Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7–8):330–347

    Article  CAS  Google Scholar 

  90. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):1231–1234

    Article  CAS  Google Scholar 

  91. Gruere GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2):191–198

    Article  Google Scholar 

  92. Guo KW (2012) Green nanotechnology of trends in future energy: a review. Int J Energy Res 36(1):1–7

    Article  Google Scholar 

  93. Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye reactive Red 4: XRD, FESEM and DRS investigations. Spectrochim Acta Part A Mol Biomol Spectrosc 150:879–885

    Article  CAS  Google Scholar 

  94. Han C, Andersen J, Pillai SC, Fagan R, Falaras P, Byrne JA, Dunlop PS, Choi H, Jiang W, O’Shea K, Dionysiou DD (2013) Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In: Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, pp 201–229

    Google Scholar 

  95. Haruyama T (2003) Micro-and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev 55(3):393–401

    Article  CAS  Google Scholar 

  96. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12R):8269

    Article  CAS  Google Scholar 

  97. Helmut Kaiser Consultancy Group (HKCG) (2009) Study: nanotechnology in food and food processing industry worldwide, 2006–2010–2015. Helmut Kaiser Consultancy Group, Beijing

    Google Scholar 

  98. Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H (2019) Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158:8–14

    Article  CAS  Google Scholar 

  99. Hood E (2004) Nanotechnology: looking as we leap. Environ Health Perspect 112(13):A740

    Article  Google Scholar 

  100. Hougeir FG, Kircik L (2012) A review of delivery systems in cosmetics. Dermatol Ther 25(3):234–237

    Article  Google Scholar 

  101. Huang H, Huang M, Zhang W, Pospisil S, Wu T (2020) Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings. J Struct Eng 146(8):04020157

    Article  Google Scholar 

  102. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132

    Article  CAS  Google Scholar 

  103. Hullmann A, Meyer M (2003) Publications and patents in nanotechnology. Scientometrics 58(3):507–527

    Article  CAS  Google Scholar 

  104. Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nanotechnology in the green economy. Environ Health 13(1):1–11

    Article  Google Scholar 

  105. Imafidon GI, Spanier AM (1994) Unraveling the secret of meat flavor. Trends Food Sci Technol 5(10):315–321

    Article  CAS  Google Scholar 

  106. Ion AC, Ion I, Culetu A, Gherase D (2010) Carbon-based nanomaterials. Environ Appl Univ Politehn Bucharest 38:129–132

    Google Scholar 

  107. Jadoun S, Verma A, Arif R (2020) Modification of textiles via nanomaterials and their applications. In: Frontiers of textile materials: polymers, nanomaterials, enzymes, and advanced modification techniques, pp 135–152

    Google Scholar 

  108. Jatoi AS, Khan FS, Mazari SA, Mubarak NM, Abro R, Ahmed J, Ahmed M, Baloch H, Sabzoi N (2021) Current applications of smart nanotextiles and future trends. Nanosensors Nanodevices Smart Multifunct Text 2021:343–365

    Article  Google Scholar 

  109. Johnston BF, Mellor JW (1961) The role of agriculture in economic development. Am Econ Rev 51(4):566–593

    Google Scholar 

  110. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  111. Karlessi T, Santamouris M, Synnefa A, Assimakopoulos D, Didaskalopoulos P, Apostolakis K (2011) Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings. Build Environ 46(3):570–576

    Article  Google Scholar 

  112. Karn BP, Bergeson LL (2009) Green nanotechnology: straddling promise and uncertainty. Nat Res Env’t 24:9

    Google Scholar 

  113. Karst D, Yang Y (2006) Potential advantages and risks of nanotechnology for textiles. AATCC Rev 6(3):44–48

    CAS  Google Scholar 

  114. Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm

    Google Scholar 

  115. Kaur J, Punia S, Kumar K (2017) Need for the advanced technologies for wastewater treatment. In: Advances in environmental biotechnology. Springer, Singapore, pp 39–52

    Google Scholar 

  116. Kausar A (2018) Polymer coating technology for high performance applications: fundamentals and advances. J Macromol Sci Part A 55(5):440–448

    Article  CAS  Google Scholar 

  117. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Biores Bioproc 2(1):1–1

    Article  Google Scholar 

  118. Khan SH, Pathak B, Fulekar MH (2018) Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol Environ Eng 3(1):1–4

    Article  CAS  Google Scholar 

  119. Khan SH (2020) Green nanotechnology for the environment and sustainable development. In: Green materials for wastewater treatment. Springer, Cham, pp 13–46

    Google Scholar 

  120. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109

    Article  CAS  Google Scholar 

  121. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  122. Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42(8):3069–3075

    Article  CAS  Google Scholar 

  123. Kumar A, Kumar A, Sharma G, Naushad M, Stadler FJ, Ghfar AA, Dhiman P, Saini RV (2017) Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis and photo-ozonation. J Clean Prod 165:431–451

    Article  CAS  Google Scholar 

  124. Lam PL, Wong WY, Bian Z, Chui CH, Gambari R (2017) Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine 12(4):357–385

    Article  CAS  Google Scholar 

  125. Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem 74(13):3084–3095

    Article  CAS  Google Scholar 

  126. Langer R (2001) Drugs on target. Science 293(5527):58–59

    Article  CAS  Google Scholar 

  127. Lee RW, Shenoy DB, Sheel R (2010) Micellar nanoparticles: applications for topical and passive transdermal drug delivery. In: Handbook of non-invasive drug delivery systems. William Andrew Publishing, pp 37–58

    Google Scholar 

  128. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390

    Article  CAS  Google Scholar 

  129. Leydecker S (2008) Nano materials in architecture, interior architecture and design. In: Birkhauser, vol 43. Boston, US, 2008

    Google Scholar 

  130. Li Q, Hu Y, Zhang B (2021) Hydrophilic ZnO nanoparticle-based antimicrobial coatings for sandstone heritage conservation. ACS Appl Nano Mater 4(12):13908–13918

    Article  CAS  Google Scholar 

  131. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469–477

    Article  CAS  Google Scholar 

  132. Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305

    Article  CAS  Google Scholar 

  133. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  134. Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28(2):354–369

    Article  Google Scholar 

  135. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121

    Article  CAS  Google Scholar 

  136. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. Int Sch Res Not

    Google Scholar 

  137. Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DY (2015) Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 23(3):587–594

    Article  CAS  Google Scholar 

  138. Lu T, Yan W, Feng G, Luo X, Hu Y, Guo J, Yu Z, Zhao Z, Ding S (2022) Singlet oxygen-promoted one-pot synthesis of highly ordered mesoporous silica materials via the radical route. Green Chem 24(12):4778–4782

    Article  CAS  Google Scholar 

  139. Lund A, van der Velden NM, Persson NK, Hamedi MM, Müller C (2018) Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Mater Sci Eng R Rep 126:1–29

    Article  Google Scholar 

  140. Maksimovic M, Omanovic-Miklicanin E (2017) Towards green nanotechnology: maximizing benefits and minimizing harm. CMBEBIH 2017. Springer, Singapore, pp 164–170

    Chapter  Google Scholar 

  141. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966

    Article  CAS  Google Scholar 

  142. Matos J, García A, Poon PS (2010) Environmental green chemistry applications of nanoporous carbons. J Mater Sci 45(18):4934–4944

    Article  CAS  Google Scholar 

  143. McNamara K, Tofail SA (2017) Nanoparticles in biomedical applications. Adv Phys: X 2(1):54–88

    CAS  Google Scholar 

  144. Mejía ML, Zapata J, Cuesta DP, Ortiz IC, Botero LE, Galeano BJ, Escobar NJ, Hoyos LM (2017) Properties of antibacterial nano textile for use in hospital environments. Revista Ingeniería Biomédica 11(22):13–19

    Google Scholar 

  145. Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4(3):587–592

    Google Scholar 

  146. Morganti P, Coltelli MB (2019) A new carrier for advanced cosmeceuticals. Cosmetics 6(1):10

    Article  CAS  Google Scholar 

  147. Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27(8):1746–1749

    Article  CAS  Google Scholar 

  148. Mukherjee S, Sushma V, Patra S, Barui AK, Bhadra MP, Sreedhar B, Patra CR (2012) Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 23(45):455103

    Article  Google Scholar 

  149. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  Google Scholar 

  150. Musee N (2011) Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Hum Exp Toxicol 30(8):820–835

    Article  CAS  Google Scholar 

  151. Nakajima T, Shinoda K, Tsuchiya T (2014) UV-assisted nucleation and growth of oxide films from chemical solutions. Chem Soc Rev 43(7):2027–2041

    Article  CAS  Google Scholar 

  152. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430

    Article  CAS  Google Scholar 

  153. Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z (2019) Green nanotechnology. In: Interface science and technology, vol 28. Elsevier, pp 145–198

    Google Scholar 

  154. Naushad M, Alothman ZA, Alam MM, Awual R, Eldesoky GE, Islam M (2015) Synthesis of sodium dodecyl sulfate-supported nanocomposite cation exchanger: removal and recovery of Cu2+ from synthetic, pharmaceutical and alloy samples. J Iranian Chemical Society. 12(9):1677–1686

    Article  CAS  Google Scholar 

  155. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47

    Article  CAS  Google Scholar 

  156. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  157. Nickols-Richardson SM, Piehowski KE (2008) Nanotechnology in nutritional sciences. Minerva Biotecnologica 20(3):117–126

    Google Scholar 

  158. Niidome Y, Haine AT, Niidome T (2016) Anisotropic gold-based nanoparticles: preparation, properties, and applications. Chem Lett 45(5):488–498

    Article  CAS  Google Scholar 

  159. Nundy S, Ghosh A, Mallick TK (2020) Hydrophilic and superhydrophilic self-cleaning coatings by morphologically varying ZnO microstructures for photovoltaic and glazing applications. ACS Omega 5(2):1033–1039

    Article  CAS  Google Scholar 

  160. Nuruzzaman MD, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  Google Scholar 

  161. OECD (2011) Fostering nanotechnology to address global challenges: water. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  162. Perera S, Bhushan B, Bandara R, Rajapakse G, Rajapakse S, Bandara C (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf, A 436:975–989

    Article  CAS  Google Scholar 

  163. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: Quo Vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  Google Scholar 

  164. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:1–8

    Article  Google Scholar 

  165. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotech 13(6):705–713

    Article  CAS  Google Scholar 

  166. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  167. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8(2):123–137

    Article  CAS  Google Scholar 

  168. Ramsurn H, Gupta RB (2013) Nanotechnology in solar and biofuels. ACS Sustain Chem Eng 1(7):779–797

    Article  CAS  Google Scholar 

  169. Raut HK, Ganesh VA, Nair AS, Ramakrishna S (2011) Anti-reflective coatings: a critical, in-depth review. Energy Environ Sci 4(10):3779–3804

    Article  CAS  Google Scholar 

  170. Raveendran P, Fu J, Wallen S (2003) Role of biopolymers in green nanotechnology. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  171. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol: Phys Chem 1(2):P72–P96

    Article  Google Scholar 

  172. Riaz S, Ashraf M, Hussain T, Hussain MT, Rehman A, Javid A, Iqbal K, Basit A, Aziz H (2018) Functional finishing and coloration of textiles with nanomaterials. Color Technol 134(5):327–346

    Article  CAS  Google Scholar 

  173. Riaz S, Ashraf M, Hussain T, Hussain MT, Younus A (2019) Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloids Surf, A 581:123799

    Article  CAS  Google Scholar 

  174. Ringe K, Walz CM, Sabel BA (2004) Nanoparticle drug delivery to the brain. Encyclopedia Nanosci Nanotechnol 7:91–104

    CAS  Google Scholar 

  175. Robinson SM, Colborne L (1997) Enhancing roe of the green sea urchin using an artificial food source. Bull Aquac Assoc Can 1997(1):14–20

    Google Scholar 

  176. Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1(1):1

    Article  Google Scholar 

  177. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346

    Article  CAS  Google Scholar 

  178. Rosset V, Ahmed N, Zaanoun I, Stella B, Fessi H, Elaissari A (2012) Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. J Colloid Sci Biotechnol 1(2):218–224

    Article  CAS  Google Scholar 

  179. Rusinko C (2007) Green manufacturing: an evaluation of environmentally sustainable manufacturing practices and their impact on competitive outcomes. IEEE Trans Eng Manage 54(3):445–454

    Article  Google Scholar 

  180. Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13(4):905–927

    Google Scholar 

  181. Saha R (2012) Cosmeceuticals and herbal drugs: practical uses. Int J Pharm Sci Res 3(1):59

    CAS  Google Scholar 

  182. Saha I, Bhattacharya S, Mukhopadhyay A, Chattopadhyay D, Ghosh U, Chatterjee D (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3(3):59–64

    Google Scholar 

  183. Saji VS, Choe HC, Yeung KWK (2010) Nanotechnology in biomedical applications-a review. Int J Nano Biomater 3:119–139

    Article  CAS  Google Scholar 

  184. Saleem H, Zaidi SJ (2020) Sustainable use of nanomaterials in textiles and their environmental impact. Materials 13(22):5134

    Article  CAS  Google Scholar 

  185. Santos AC, Morais F, Simões A, Pereira I, Sequeira JA, Pereira-Silva M, Veiga F, Ribeiro A (2019) Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv 16(4):313–330

    Article  CAS  Google Scholar 

  186. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012

    Article  Google Scholar 

  187. Schoden F (2021) Ecological and sustainable smart nanotextile. In: Nanosensors and nanodevices for smart multifunctional textiles. Elsevier, pp 287–320

    Google Scholar 

  188. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767

    CAS  Google Scholar 

  189. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  Google Scholar 

  190. Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Euro Agric 16:117–130

    Article  Google Scholar 

  191. Shabbir M, Kaushik M (2020) Engineered nanomaterials: scope in today’s textile industry. In: Handbook of nanomaterials for manufacturing applications. Elsevier, pp 249–263

    Google Scholar 

  192. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed: Nanotechnol, Biol Med 3(2):168–171

    Google Scholar 

  193. Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Green processes for nanotechnology. Springer, Cham, pp 409–434

    Google Scholar 

  194. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  Google Scholar 

  195. Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 16(1):1–28

    Article  Google Scholar 

  196. Silva IO, Ladchumananandasivam R, Nascimento JH, Silva KK, Oliveira FR, Souto AP, Felgueiras HP, Zille A (2019) Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 9(8):1064

    Article  CAS  Google Scholar 

  197. Singh R, Tiwari S, Tawaniya J (2013) Review on nanotechnology with several aspects. Int J Res Comput Eng Electron 2(3):1–8

    Google Scholar 

  198. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99(11):4579–4593

    Article  CAS  Google Scholar 

  199. Singh P, Pandit S, Mokkapati VR, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7):1979

    Article  Google Scholar 

  200. Singh M, Vajpayee M, Ledwani L (2020) Eco-friendly surface modification and nanofinishing of textile polymers to enhance functionalization. Nanotechnol Energy Environ Eng 2020:529–559

    Article  Google Scholar 

  201. Smith GB, Gentle A, Swift P, Earp A, Mronga N (2003) Coloured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theory. Sol Energy Mater Sol Cells 79(2):163–177

    Article  CAS  Google Scholar 

  202. Smith GB (2011) Green nanotechnology. In: Nanostructured thin films IV, vol 8104. SPIE, pp 9–22

    Google Scholar 

  203. Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  204. Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169

    Article  CAS  Google Scholar 

  205. Some S, Sen IK, Mandal A, Aslan T, Ustun Y, Yilmaz EŞ, Katı A, Demirbas A, Mandal AK, Ocsoy I (2018) Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Exp 6(1):012001

    Article  Google Scholar 

  206. Soni V, Chandel S, Jain P, Asati S (2016) Role of liposomal drug-delivery system in cosmetics. In: Nanobiomaterials in Galenic formulations and cosmetics. William Andrew Publishing, pp 93–120

    Google Scholar 

  207. Sonneville-Aubrun O, Simonnet JT, L’alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108:145–149

    Google Scholar 

  208. Souto EB, Müller RH (2008) Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®). Int J Cosmet Sci 30(3):157–165

    Article  CAS  Google Scholar 

  209. Souto T, Almeida M, Leal V, Machado J, Mendes A (2020) Total solar reflectance optimization of the external paint coat in residential buildings located in mediterranean climates. Energies 13(11):2729

    Article  Google Scholar 

  210. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  Google Scholar 

  211. The Eleventh ASEAN Food Conference; 21–23 October 2009; Bandar Seri Begawan, Brunei Darussalam

    Google Scholar 

  212. Tennakone K, Kumara GR, Kumarasinghe AR, Wijayantha KG, Sirimanne PM (1995) A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol 10(12):1689

    Article  Google Scholar 

  213. Thornhill S, Vargyas E, Fitzgerald T, Chisholm N (2016) Household food security and biofuel feedstock production in rural Mozambique and Tanzania. Food Secur 8(5):953–971

    Article  Google Scholar 

  214. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433

    Google Scholar 

  215. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  216. Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48

    Article  CAS  Google Scholar 

  217. U. S. Food, and Drug Administration (2018) Is it a cosmetic, a drug, or both? (Or is it soap?). Available online at: https://www.fda.gov/cosmetics/guidanceregulation/lawsregulations/ucm074201.htm. Accessed 02 Aug 2018

  218. Ul-Islam S, Butola BS (2018) Nanomaterials in the wet processing of textiles. John Wiley & Sons

    Google Scholar 

  219. van Amerongen A, Barug D, Lauwaars M (2007) Rapid methods for food and feed quality determination. Wageningen Academic Publishers

    Google Scholar 

  220. Verma A, Gautam SP, Bansal KK, Prabhakar N, Rosenholm JM (2019) Green nanotechnology: advancement in phytoformulation research. Medicines 6(1):39

    Article  CAS  Google Scholar 

  221. Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis-a review. Polish J Food Nutr Sci 58(2):157–164

    CAS  Google Scholar 

  222. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  CAS  Google Scholar 

  223. Watanabe J, Iwamoto S, Ichikawa S (2005) Entrapment of some compounds into biocompatible nano-sized particles and their releasing properties. Colloids Surf, B 42(2):141–146

    Article  CAS  Google Scholar 

  224. West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotechnol 11(2):215–217

    Article  CAS  Google Scholar 

  225. Winkler G (2011) Green facilities: industrial and commercial LEED certification. GreenSource, 1st edn. The McGraw-Hill Companies, Inc

    Google Scholar 

  226. Wu Q, Zhang Q, Zhao L, Li SN, Wu LB, Jiang JX, Tang LC (2017) A novel and facile strategy for highly flame retardant polymer foam composite materials: transforming silicone resin coating into silica self-extinguishing layer. J Hazard Mater 336:222–231

    Article  CAS  Google Scholar 

  227. Wu Y, Zhao Y, Han X, Jiang G, Shi J, Liu P, Khan MZ, Huhtinen H, Zhu J, Jin Z, Yamada Y (2021) Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning. Mater Today Phys 18:100400

    Article  CAS  Google Scholar 

  228. Xiang T, Lv Z, Wei F, Liu J, Dong W, Li C, Zhao Y, Chen D (2019) Superhydrophobic civil engineering materials: a review from recent developments. Coatings 9(11):753

    Article  CAS  Google Scholar 

  229. Xu H, Li Y, Huang NJ, Yu ZR, Wang PH, Zhang ZH, Xia QQ, Gong LX, Li SN, Zhao L, Zhang GD (2019) Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J Hazard Mater 363:286–294

    Article  CAS  Google Scholar 

  230. Xue CH, Wu Y, Guo XJ, Liu BY, Wang HD, Jia ST (2020) Superhydrophobic, flame-retardant and conductive cotton fabrics via layer-by-layer assembly of carbon nanotubes for flexible sensing electronics. Cellulose 27(6):3455–3468

    Article  CAS  Google Scholar 

  231. Yeh MI, Huang HC, Liaw JH, Huang MC, Huang KF, Hsu FL (2013) Dermal delivery by niosomes of black tea extract as a sunscreen agent. Int J Dermatol 52(2):239–245

    Article  CAS  Google Scholar 

  232. Yih TC, Al‐Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cellular Biochem 97(6):1184–1190

    Google Scholar 

  233. Yilmaz ND (2018) Introduction to smart nanotextiles. Smart Text Wearable Nanotechnol 16:1–37

    Google Scholar 

  234. Yu ZR, Mao M, Li SN, Xia QQ, Cao CF, Zhao L, Zhang GD, Zheng ZJ, Gao JF, Tang LC (2021) Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem Eng J 405:126620

    Article  CAS  Google Scholar 

  235. Yukuyama MN, Ghisleni DD, Pinto TD, Bou-Chacra NA (2016) Nanoemulsion: process selection and application in cosmetics–a review. Int J Cosmet Sci 38(1):13–24

    Article  CAS  Google Scholar 

  236. Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agr Ecosyst Environ 49(3):299–307

    Article  Google Scholar 

  237. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

    Article  CAS  Google Scholar 

  238. Zhang H, Lamb R, Lewis J (2005) Engineering nanoscale roughness on hydrophobic surface-preliminary assessment of fouling behaviour. Sci Technol Adv Mater 6(3–4):236–239

    Article  CAS  Google Scholar 

  239. Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL, Wang H (2016) Facet control of gold nanorods. ACS Nano 10(2):2960–2974

    Article  CAS  Google Scholar 

  240. Zheng L, Xiong T, Shah KW (2019) Transparent nanomaterial-based solar cool coatings: synthesis, morphologies and applications. Sol Energy 193:837–858

    Article  CAS  Google Scholar 

  241. Zhu Q, Chua MH, Ong PJ, Lee JJ, Chin KL, Wang S, Kai D, Ji R, Kong J, Dong Z, Xu J (2022) Recent advances in nanotechnology-based functional coatings for the built environment. Mater Today Adv 15:100270

    Article  CAS  Google Scholar 

  242. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

  243. Zou GF, Zhao J, Luo HM, McCleskey TM, Burrell AK, Jia QX (2013) Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chem Soc Rev 42(2):439–449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meesala Krishna Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murthy, M.K., Khandayataray, P., Samal, D., Pattanayak, R., Mohanty, C.S. (2023). Green Nanotechnology: A Roadmap to Long-Term Applications in Biomedicine, Agriculture, Food, Green Buildings, Coatings, and Textile Sectors. In: Khan, T., Jawaid, M., Ahmad, K.A., Singh, B. (eds) Nanomaterials: The Building Blocks of Modern Technology. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-4149-0_12

Download citation

Publish with us

Policies and ethics