Skip to main content

Unified Approach to Inshore Ship Detection in Optical/radar Medium Spatial Resolution Satellite Images

  • Conference paper
  • First Online:
Proceedings of the 7th International Symposium of Space Optical Instruments and Applications (ISSOIA 2022)

Abstract

High-resolution optical or radar images are usually used as input data, while ship detection is based mainly on certain kinds of features, namely geometric or spectroradiometric ones. Image processing and analysis algorithms usually differ significantly for optical and radar ones. This circumstance complicates the software for ship detection and requires high-qualified experts’ participation. The authors propose an approach to ship detection involving a combination of specific geometric and radiometric features, which is quite possible to extract from a medium spatial resolution multiband satellite image. An essential advantage of the approach is the unification of algorithms for calculating features for both optical and radar satellite images.

The proposed approach is instantiated as the following step-by-step procedure:

In the first step, a mask of the water surface is acquired, where search targets, i.e. ships, can be located. Further processing is carried out within this mask only.

In the second step, anomalies of the water surface, which can be considered as candidates on ships, are detected by geometric features and separately by multidimensional spectroradiometric features. Then, the detected anomalies are presented in a unified probabilistic form. In the third step, the partial maps of geometric and spectroradiometric anomalies are fused into a single joint probability of locked targets using a modified Bayesian rule. Finally, in the fourth step, the decision on the detection is made by comparing the fused probability value with a specified threshold.

Evaluation of the proposed approach, conducted over actual medium resolution Sentinel 1 radar satellite images and Sentinel 2 optical ones, demonstrated fair performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stalker, P. (ed.): Review of Maritime Transport 2021. United Nations Publications, New York (2021)

    Google Scholar 

  2. Metcalfe, K., et al.: Using satellite AIS to improve our understanding of shipping and fill gaps in ocean observation data to support marine spatial planning. J. Appl. Ecol. 55(4), 1834–1845 (2018). https://doi.org/10.1111/1365-2664.13139

    Article  Google Scholar 

  3. Proud, R., Browning, P., Kocak, D.M.: AIS-based mobile satellite service expands opportunities for affordable global ocean observing and monitoring. In: Proceedings of the MTS/OTS OCEANS’2016 Conference, pp. 1–8. IEEE, Monterey (2016). https://doi.org/10.1109/OCEANS.2016.7761069

  4. Heiselberg, H., Stateczny, A.: Remote sensing in vessel detection and navigation. Sensors 20(20), 5841 (2020). https://doi.org/10.3390/s20205841

    Article  ADS  Google Scholar 

  5. EMSA. Vessel traffic monitoring in EU waters (SafeSeaNet). http://www.emsa.europa.eu/ssn-main.html. Accessed 18 Nov 2022

  6. Chintoan-Uta, M., Silva, J.R.: Global maritime domain awareness: a sustainable development perspective. WMU J. Marit. Aff. 16(1), 37–52 (2016). https://doi.org/10.1007/s13437-016-0109-5

    Article  Google Scholar 

  7. Reggiannini, M., et al.: Remote sensing for maritime prompt monitoring. J. Mar. Sci. Eng. 7(7), 202 (2019). https://doi.org/10.3390/jmse7070202

    Article  Google Scholar 

  8. Corbane, C., Najman, L., Pecoul, E., Demagistri, L., Petit, M.: A complete processing chain for ship detection using optical satellite imagery. Int. J. Remote Sens. 31(22), 5837–5854 (2010). https://doi.org/10.1080/01431161.2010.512310

    Article  Google Scholar 

  9. Shajini, V.S., Kumar, K.M.: Analysis of ship detection techniques in remote sensing image. Int. Res. J. Eng. Technol. 5(11), 832–835 (2018)

    Google Scholar 

  10. Kanjir, U., Greidanus, H., Oštirc, K.: Vessel detection and classification from spaceborne optical images: a literature survey. Remote Sens. Environ. 207, 1–26 (2018). https://doi.org/10.1016/j.rse.2017.12.033

    Article  ADS  Google Scholar 

  11. Li, B., Xie, X., Wei, X., Tang, W.: Ship detection and classification from optical remote sensing images: a survey. Chin. J. Aeronaut. 34(3), 145–163 (2021). https://doi.org/10.1016/j.cja.2020.09.022

    Article  Google Scholar 

  12. Cheng, G., Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote. Sens. 117, 11–28 (2016). https://doi.org/10.1016/j.isprsjprs.2016.03.014

    Article  ADS  Google Scholar 

  13. Mazzarella, F., Arguedas, V.F., Vespe, M.: Knowledge-based vessel position prediction using historical AIS data. In: Proceedings of International Conference on Sensor Data Fusion: Trends, Solutions, Applications (SDF 2015), pp. 1–6. IEEE, Bonn (2015). https://doi.org/10.1109/SDF.2015.7347707

  14. Aiello, M., Vezzoli, R., Gianinetto, M.: Object-based image analysis approach for vessel detection on optical and radar images. J. Appl. Remote Sens. 13(1), 014502 (2019). https://doi.org/10.1117/1.JRS.13.014502

    Article  ADS  Google Scholar 

  15. Shao, J., Yang, Q., Luo, C., Li, R., Zhou, Y., Zhang, F.: Vessel detection from nighttime remote sensing imagery based on deep learning. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 14, 12536–12544 (2021). https://doi.org/10.1109/JSTARS.2021.3125834

    Article  ADS  Google Scholar 

  16. Ghosh, S., et al.: On-board ship detection for medium resolution optical sensors. Sensors 21(9), 3062 (2021). https://doi.org/10.3390/s21093062

    Article  ADS  Google Scholar 

  17. Štepec D., Martinčič T., Skočaj, D.: Automated system for ship detection from medium resolution satellite optical imagery. In: Proceedings of the MTS/OTS OCEANS’2019 Conference, pp. 1–10. IEEE, Seattle (2019). https://doi.org/10.23919/OCEANS40490.2019.8962707

  18. Miao, R., Jiang, H., Tian, F.: Robust ship detection in infrared images through multiscale feature extraction and lightweight CNN. Sensors 22(3), 1226 (2022). https://doi.org/10.3390/s22031226

    Article  ADS  Google Scholar 

  19. Kiruba, K.: A survey on ship detection in remote sensing images. J. Anal. Comput. XII(I), 2861 (2019)

    Google Scholar 

  20. Ouchi, K.: Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens. 5(2), 716–807 (2013). https://doi.org/10.3390/rs5020716

    Article  ADS  Google Scholar 

  21. Li, J., Xu, C., Su, H., Gao, L., Wang, N.: Deep learning for SAR ship detection: past, present and future. Remote Sens. 14(11), 2712 (2022). https://doi.org/10.3390/rs14112712

    Article  ADS  Google Scholar 

  22. Shu, G., Chang, J., Lu, J., Wang, Q., Li, N.: A novel method for SAR ship detection based on eigensubspace projection. Remote Sens. 14(14), 3441 (2022). https://doi.org/10.3390/rs14143441

    Article  ADS  Google Scholar 

  23. Iervolino, P., Guida, R., Lumsdon, P., Janoth, J., Clift, M., Minchella, A., Bianco, P.: Ship detection in SAR imagery: a comparison study. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS 2017), pp. 2050–2053. IEEE, Fort Worth (2017). https://doi.org/10.1109/IGARSS.2017.8127384

  24. Chang, Y.-L., Anagaw, A., Chang, L., Wang, Y.C., Hsiao, C.-Y., Lee, W.-H.: Ship detection based on YOLOv2 for SAR imagery. Remote Sens. 11(7), 786 (2019). https://doi.org/10.3390/rs11070786

    Article  ADS  Google Scholar 

  25. Jubelin, G., Khenchaf, A.: A unified algorithm for ship detection on optical and SAR spaceborne images. Proc. SPIE 9244, 924415 (2014). https://doi.org/10.1117/12.2067154

    Article  Google Scholar 

  26. Leng, X., Ji, K., Zhou, S., Xing, X.: Ship detection based on complex signal kurtosis in single-channel SAR imagery. IEEE Trans. Geosci. Remote Sens. 57(9), 6447–6461 (2019). https://doi.org/10.1109/TGRS.2019.2906054

    Article  ADS  Google Scholar 

  27. Yang, C.-S., Kim, T.-H.: Integration of SAR and AIS for ship detection and identification. Proc. SPIE 8372, 83720A (2012). https://doi.org/10.1117/12.920359

    Article  ADS  Google Scholar 

  28. Park, K.-A., Park, J.-J., Jang, J.-C., Lee, J.-H., Oh, S., Lee, M.: Multi-spectral ship detection using optical, hyperspectral, and microwave SAR remote sensing data in coastal regions. Sustainability 10(11), 4064 (2018). https://doi.org/10.3390/su10114064

    Article  Google Scholar 

  29. Vane, G., Green, R.O., Chrien, T.G., Enmark, H.T., Hansen, E.G., Porter, W.M.: The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 44(2–3), 127–143 (1993). https://doi.org/10.1016/0034-4257(93)90012-M

    Article  ADS  Google Scholar 

  30. Gandhi, P.P., Kassam, S.A.: Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988). https://doi.org/10.1109/7.7185

    Article  ADS  Google Scholar 

  31. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  32. Cardoso, J.-F.: Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2025 (1998). https://doi.org/10.1109/5.720250

    Article  Google Scholar 

  33. Stankevich, S.A., Gerda, M.I.: Small-Size target’s automatic detection in multispectral image using equivalence principle. Cent. Eur. Res. J. 6(1), 1–9 (2020)

    Google Scholar 

  34. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996). https://doi.org/10.1016/0031-3203(95)00067-4

    Article  ADS  Google Scholar 

  35. Zhao, H., Wang, Q., Huang, J., Wu, W., Yuan, N.: Method for inshore ship detection based on feature recognition and adaptive background window. J. Appl. Remote Sens. 8(1), 083608 (2014). https://doi.org/10.1117/1.JRS.8.083608

    Article  ADS  Google Scholar 

  36. Haigang, S., Zhina, S.: A novel ship detection method for large-scale optical satellite images based on visual LBP feature and visual attention model. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. XLI-B3, 917–921 (2016). https://doi.org/10.5194/isprs-archives-XLI-B3-917-2016

  37. Knysztofowicz, R., Long, D.: Fusion of detection probabilities and comparison of multisensor systems. IEEE Trans. Syst. Man Cybern. 20(3), 665–677 (1990). https://doi.org/10.1109/21.57281

    Article  Google Scholar 

  38. Krishnamoorthy, K.: Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC, New York (2006). https://doi.org/10.1201/9781420011371

  39. Ash, R.B.: Basic Probability Theory. Dover Publications, New York (2008)

    MATH  Google Scholar 

  40. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

  41. Kobayashi, Y.: Effects of numerical errors on sample Mahalanobis distances. IEICE Trans. Inf. Syst. E99.D(5), 1337–1344 (2016). https://doi.org/10.1587/transinf.2015EDP7348

  42. Mešalkin, L.D., Serdobol’skiy, V.I.: Classification errors in the case of multidimensional distributions. Theory Probab. its Appl. XXIII(4), 772–781 (1978). https://doi.org/10.1137/1123090

  43. Gallego, G., Cuevas, C., Mohedano, R., García, N.: On the Mahalanobis distance classification criterion for multidimensional normal distributions. IEEE Trans. Signal Process. 61(17), 4387–4396 (2013). https://doi.org/10.1109/TSP.2013.2269047

    Article  ADS  Google Scholar 

  44. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990). https://doi.org/10.1016/C2009-0-27872-X

    Book  MATH  Google Scholar 

  45. Schmidt, K., Schwerdt, M., Miranda, N., Reimann, J.: Radiometric comparison within the Sentinel-1 SAR constellation over a wide backscatter range. Remote Sens. 12(5), 854 (2020). https://doi.org/10.3390/rs12050854

    Article  ADS  Google Scholar 

  46. Szantoi, Z., Strobl, P.: Copernicus Sentinel-2 calibration and validation. Eur. J. Remote Sens. 52(1), 253–255 (2019). https://doi.org/10.1080/22797254.2019.1582840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popov, M.O., Stankevich, S.A., Pylypchuk, V.V., Xing, K., Zhang, C. (2023). Unified Approach to Inshore Ship Detection in Optical/radar Medium Spatial Resolution Satellite Images. In: Urbach, H.P., Jiang, H. (eds) Proceedings of the 7th International Symposium of Space Optical Instruments and Applications. ISSOIA 2022. Springer Proceedings in Physics, vol 295. Springer, Singapore. https://doi.org/10.1007/978-981-99-4098-1_8

Download citation

Publish with us

Policies and ethics