Skip to main content

3D Printing in Cardiovascular Science and Engineering

  • Conference paper
  • First Online:
Healthcare Research and Related Technologies (NERC 2022)

Abstract

Coronary circulation comprises supplying blood to the heart muscles facilitated by coronary arteries. Coronary arteries originating from coronary ostia divide into two major branches: the right and the left main coronary artery. As the blood flows through these arteries, fatty acids and other molecules start depositing on the inner lining of the arteries. These depositions lead to narrowing down of arteries, obstructing the flow, and are termed as Atherosclerosis. Recently, in the domain of cardiovascular medicine, 3D printing has been introduced. We have discussed about the basic technologies of 3D printing and how their use is evolving in cardiovascular science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar S, Singh GK, Varughese J, Nguyen H, Billadello JJ, Sheybani EF, Woodard PK, Manning P, Eghtesady P (2017) 3D printing in complex congenital heart disease. JACC: Cardiovasc Imaging 10(8):953–956

    Google Scholar 

  2. Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modelling: a review. Rapid Prototyp J 22(2):281–299

    Article  Google Scholar 

  3. Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, Kuffer J, Henning J, Markl M (2008) 3D MR Flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59:535–546

    Article  Google Scholar 

  4. Carvalho V, Rodrigues N, Ribeiro R, Costa PF, Teixeira JC, Lima RA, Teixeira S (2021) Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation. Comput Methods Biomech Biomed Eng 24(6):623–636

    Article  Google Scholar 

  5. Carvalho V, Rodrigues N, Ribeiro R, Costa PF, Lima RA, Teixeira S (2020) 3D printed biomodels for flow visualization in stenotic vessels: an experimental and numerical study. Micromachines 11(6):549

    Article  Google Scholar 

  6. Castiaux AD, Pinger CW, Hayter EA, Bunn ME, Martin RS, Spence DM (2019) PolyJet 3D printed enclosed microfluidic channels without photocurable supports. Anal Chem 91(10):6910–6917

    Article  Google Scholar 

  7. Dankowski R, Baszko A, Sutherland M, Firek L, Kalmucki P, Wroblewska K, Szyszka A, Groothuis A, Siminiak T (2014) 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol Pol 72(6):546–551

    Article  Google Scholar 

  8. Davies MJ, Woolf N (1993) Atherosclerosis: what is it and why does it occur? Br Hear J 69(1 Suppl):S3–S11

    Google Scholar 

  9. Garcia J, Yang Z, Mongrain R, Leask RL, Lachapelle K (2017) 3D printing biomaterials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanc Learn 4(1):27–40

    Article  Google Scholar 

  10. Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrecic D, Zavan B (2020) Recent applications of three-dimensional printing in cardiovascular medicine. Cells 9:742

    Article  Google Scholar 

  11. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13(12):701–718

    Article  Google Scholar 

  12. Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Schick F, Oppitz M, Meinzer HP, Sieverding L (2007) Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 96(3):176–185

    Article  Google Scholar 

  13. Huang J, Qin Q, Wang J (2020) A review of stereolithography: processes and systems. Processes 8(9):1138

    Article  Google Scholar 

  14. Jamroz W, Szafraneic J, Kurek M, Jachowicz R (2018) 3D printing pharmaceutical and medical applications–recent achievements and challenges. Pharm Res 35(9):176

    Article  Google Scholar 

  15. Layani M, Wang X, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30:1706344

    Article  Google Scholar 

  16. Kato B, Wisser G, Agrawal DK, Wood T, Thanksm FG (2021) 3D bioprinting of cardiac tissues: current challenges and perspectives. J Mater Sci Mater Med 32:54

    Article  Google Scholar 

  17. Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, Kim CS, Choi SH, Kim BJ, Ha H, Kwon SU, Kim N (2016) Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol 17(2):182–197

    Article  Google Scholar 

  18. Kindi HN, Yacoub MH (2019) Transection and Relocation of anomalous left coronary artery after aborted sudden cardiac death. Ann Thorac Surg 108(1):e25–e28

    Article  Google Scholar 

  19. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434

    Article  Google Scholar 

  20. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  Google Scholar 

  21. Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors, 2020 and beyond. J Am Coll Cardiol 74(20):2529–2532

    Article  Google Scholar 

  22. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modelling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53

    Article  Google Scholar 

  23. Morup SD, Stowe J, Precht H, Gervig MH, Foley C (2021) Design of 3D printed coronary artery model for CT optimization. Radiography. https://doi.org/10.1016/j.radi.2021.09.001

    Article  Google Scholar 

  24. Nandy J, Sarangi H, Sahoo S (2019) A review on direct metal laser sintering: process features and microstructure modeling. Lasers Manuf Mater Process 6:280–316

    Article  Google Scholar 

  25. Noecker AM, Chen JF, Zhou Q, White RD, Kopkack MW, Arruda MJ, Duncan MW (2006) Development of patient-specific three-dimensional paediatric cardiac models. Am Soc Artif Intern Organs 52(3):349–353

    Article  Google Scholar 

  26. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6:1900344

    Article  Google Scholar 

  27. Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N (2018) 3D and 4D bioprinting of myocardium: current approaches, challenges and future prospects. Biomed Res Int 2018:6497242

    Article  Google Scholar 

  28. Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946

    Article  Google Scholar 

  29. Prendergast ME, Burdick JA (2020) Recent advancements in enabling technologies in 3D printing for precision medicine. Adv Mater 32:1902516

    Article  Google Scholar 

  30. Ramanthan T, Skinner H (2005) Coronary blood flow. Contin Educ Anaesth, CritAl Care Pain 5(2):65–66

    Google Scholar 

  31. Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies–a review to technical synthesis in numerical study of selective laser melting. Materials 13(17):3895

    Article  Google Scholar 

  32. Rengier F, Mehndiratta A, Kobligk HV, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341

    Article  Google Scholar 

  33. Scharnowski S, Kahler CJ (2020) Particle image velocimetry: classical operating rule from today’s perspective. Opt Lasers Eng 135:106185

    Article  Google Scholar 

  34. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265

    Article  Google Scholar 

  35. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials and applications. Procedia Manuf 35:1286–1296

    Article  Google Scholar 

  36. Shanmugavelayudam SK, Rubenstein DA, Yin W (2010) Effect of geometrical assumptions on numerical modelling of coronary blood flow under normal and disease conditions. J Biomech Eng 132(6)

    Google Scholar 

  37. Singh YP, Bandyopadhyay A, Mandal BB (2019) 3D Bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. Appl Mater Interfaces 11:33684–33696

    Article  Google Scholar 

  38. Sommer KN, Shepard LM, Mitsouras D, Iyer V, Angel E, Wilson MF, Rybicki FJ, Kumamuru KK, Sharma UC, Reddy A, Fujimoto S, Ionita CN (2020) Patient-specific 3D printed coronary models based on coronary computed tomography angiography volumes to investigate flow conditions in coronary artery disease. Biomed Phys Eng Express 6(4):045007

    Article  Google Scholar 

  39. Sun Z, Jansen S (2019) Personalized 3D printed coronary models in coronary stenting. Quant Imaging Med Surg 9(8):1356–1367

    Article  Google Scholar 

  40. Taki A, Kermani A, Ranjbarnavazi SM, Pourmodheji A (2017) Overview of different medical imaging techniques for the identification of coronary atherosclerotic plaques. Comput Vis Intravasc Imaging Comput-Assist Stenting (Chapter 4) 79–106

    Google Scholar 

  41. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR (2021) An overview on materials and techniques in 3D bioprinting towards biomedical application. Eng Regen 2:1–18

    Google Scholar 

  42. Vukicevic M, Mosadegh B, Min JK, Little SH (2017) Cardiac 3D printing and its future directions. JACC: Cardiovasc Imaging 10(2):171–184

    Google Scholar 

  43. Wang H, Song H, Yang Y, Cao Q, Hu Y, Chen J, Guo J, Wang Y, Jia D, Cao S, Zhou Q (2020) Three-dimensional printing for cardiovascular diseases: from anatomical modeling to dynamic functionality. Biomed Eng Online 19:76

    Article  Google Scholar 

  44. Yang Y, Liu X, Xia Y, Wu W, Xiong H, Zhang H, Xu L, Wong KKL, Ouyang H, Huang W (2017) Impact of spatial characteristics in the left stenotic coronary artery on the hemodynamics and visualization of 3D replica models. Sci Rep 7:1542

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudrika Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singhal, M., Saha, U.N., Gupta, R. (2023). 3D Printing in Cardiovascular Science and Engineering. In: Pandey, L.M., Gupta, R., Thummer, R.P., Kar, R.K. (eds) Healthcare Research and Related Technologies. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-99-4056-1_15

Download citation

Publish with us

Policies and ethics