Skip to main content

Using QS in Biological Control as an Alternative Method

  • Chapter
  • First Online:
Microbial Biocontrol: Molecular Perspective in Plant Disease Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 49))

  • 146 Accesses

Abstract

The microorganisms are provided by the Quorum sensing (QS) mechanism to communicate between inter-species. The signaling molecules known as autoinducers are essential to this QS communication mechanism. The most typical autoinducer is known as N-acyl-homoserine lactones (AHLs). QS enables bacteria to cooperate, live, compete, endure in the environment, or colonize the host. The proliferation of nearby bacterial cells is the most crucial factor to activate for QA. So, a wide of behaviors in bacteria are provided by QS including bioluminescence, swarming, biofilm, motility, stress survival, and virulence factors. However, some studies indicate that the QS-disputing mechanism reduces adequately population density and virulence accordingly. The QS manipulation methods such as AHL-degradation and mimic act give promising approaches to controlling plant pathogen bacteria. So, it can lead to an alternative way of supporting biological control. This review focuses on the QS mechanism in plant bacteria and the different disrupting mechanisms. It demonstrates a novel method in biocontrol and the major outcomes of plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RC, McNally L, Popat R, Brown SP (2016) Quorum sensing protects bacterial co-operation from exploitation by cheats. Int Soc Microbial Ecol 10:1706–1716

    CAS  Google Scholar 

  • Alt-Morbe J, Stryker JL, Fuqua C, Li PL, Farrand SK, Winans SC (1996) The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J Bacteriol 178:4248–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltenneck J, Reverchom S, Hommais F (2021) Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  CAS  PubMed  Google Scholar 

  • Barnard AML, Salmond GPC (2007) Quorum sensing in Erwinia species. Anal Bioanal Chem 387:415–423

    Article  CAS  PubMed  Google Scholar 

  • Barnard AML, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GPC (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc B 362:1165–1183

    Article  CAS  Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    Article  CAS  PubMed  Google Scholar 

  • Beck von Bodman S, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Høiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    Article  CAS  PubMed  Google Scholar 

  • Bourras S, Rouxel T, Meyer M (2015) Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and non plant organisms. Phytopathology 105:1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Byers JT, Lucas C, Salmond GP, Welch M (2002) Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 184:1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castang S, Reverchon S, Gouet P, Nasser W (2006) Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. J Biol Chem 281:29972–29987

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Sonti RV (2002) rpfFmutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant-Microbe Interact 15:463–471

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Chen CJ, Liao CT, Lee CY (2009) A probable aculeacin acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Ma A, Zhuang X, He X, Zhuang G (2016) N-(3-oxo-hexanoyl)-homoserine lactone has a critical contribution to the quorum-sensing-dependent regulation in phytopathogen Pseudomonas syringae pv. tabaci 11528. FEMS Microbiol Lett 363:fnw265

    Article  PubMed  Google Scholar 

  • Cheng F, Ma A, Luo J, Zhuang X, Zhuang G (2018) N-acylhomoserine lactone-regulation of genes mediating motility and pathogenicity in Pseudomonas syringae pathovar tabaci 11528. Microbiol Open 6:e00440

    Article  Google Scholar 

  • Chun W, Cui J, Poplawsky AR (1997) Purification, characterization and biological role of a pheromone produced by Xanthomonas campestris pv. campestris. Physiol Mol Plant Pathol 51:1–14

    Article  CAS  Google Scholar 

  • Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18:334–342

    Google Scholar 

  • Crépin A, Beury-Cirou A, Barbey C, Farmer C, Hélias V, Burini JF, Faure D, Latour X (2012) N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence. Sensors (Basel) 12:3484–3497

    Google Scholar 

  • Cui YY, Chatterjee A, Liu Y, Dumenyo CK, Chatterjee AK (1995) Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone and pathogenicity of soft-rotting in Erwinia spp. J Bacteriol 177:5108–5115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acyl homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumenyo C, Mukherjee A, Chun W, Chatterjee AK (1998) Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur J Plant Pathol 104:569–582

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B (2001) Acylhomoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Farrand SK, Qin YP, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Method Enzymol 358:452–484

    Article  CAS  Google Scholar 

  • Feng L, Schaefer AL, Hu M, Chen R, Greenberg EP, Zhou J (2019) Virulence factor identification in the banana pathogen Dickeya zeae ms2. Appl Environ Microbiol 85:e01611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3- hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorumsensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell to cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  • Ganin H, Tang X, Meijler MM (2009) Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorg Med Chem Lett 19:3941–3944

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2012) Traversing the cell: agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52. [

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill EE, Franco OL, Hancock RE (2015) Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 85:56–78

    Article  CAS  PubMed  Google Scholar 

  • Ham JH, Cui Y, Alfano JR, Rodríguez-Palenzuela P, Rojas CM (2004) Analysis of Erwinia chrysanthemi EC16 pelE::uidA, pelL::uida, and hrpN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system. Mol Plant-Microbe Interact 17:184–194

    Article  CAS  PubMed  Google Scholar 

  • Helman Y, Chernın L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16(3):316–329

    Article  PubMed  Google Scholar 

  • Hussain MBBM, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang H (2007) The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 190:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xaiver KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Tateda K, Ishii Y, Horikawa M, Miyairi S, Gotoh N, Ishiguro M, Yamaguchi K (2009) Pseudomonas aeruginosa las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species. Microbiology 155:1934–1939

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LEN, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  PubMed  Google Scholar 

  • Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subsp.stewartii. Proc Natl Acad Sci U S A 103:5983–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YH, Xu JL, Hu JY, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860

    Article  PubMed  Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Fillgrove WY, Anderson VE (2002) Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49:187–193

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Yuen-Tsai JPY, Welborn A, Stacey G (2001) Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 42:37–46

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002a) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99:14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A (2002b) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:1–6

    Article  Google Scholar 

  • Luo ZQ, Farrand SK (2001) The Agrobacterium tumefaciens rnd homolog is required for TraR-mediated quorum-dependent activation of Ti plasmid tra gene expression. J Bacteriol 183:3919–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mae A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant-Microbe Interact 14:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meighen EA (1994) Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Babujee L, Jacobs JM, Allen C (2015) Comparative transcriptome analysis reveals cool virulence factors of Ralstonia solanacearum race 3 biovar 2. PLoS One 10:e0139090

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Geider K (2007) Autoinducer-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria. FEMS Microbiol Lett 266:34–41

    Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    Article  CAS  PubMed  Google Scholar 

  • More MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined sub-strates. Science 272:1655–1658

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Cui Y, Liu Y, Chatterjee AK (1997) Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol Plant–Microbe Interact 10:462–471

    Google Scholar 

  • Mukherjee A, Cui Y, Ma WL, Liu Y, Chatterjee AK (2000) hexA of Erwinia carotovora ssp carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Environ Microbiol 2:203–215

    Google Scholar 

  • Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405

    Article  CAS  PubMed  Google Scholar 

  • Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau MC, Déziel E, Reverchon S (2012) A new quorum sensing system controls the virulence of Dickeya dadantii. Environ Microbiol 15:865–880

    Article  PubMed  Google Scholar 

  • Nealson KH, Hastings JW (1979) Microbiol Rev 43:469–518

    Article  Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 92:1490–1494

    Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Article  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    Article  CAS  PubMed  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    Article  CAS  PubMed  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Reverchon S, Bouillant ML, Salmond G, Nasser W (1998) Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol 29:1407–1418

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Duffy B (2007) The role of LuxS in the fire blight pathogen Erwinia amylovora is limited to metabolism and does not involve quorum sensing. Mol Plant Microbe Interact 20:1284–1297

    Article  CAS  PubMed  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  CAS  PubMed  Google Scholar 

  • Schenk ST, Schikora A (2014) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784

    Google Scholar 

  • Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181

    Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd RW, Lindow SE (2008) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75:45–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha A, Elhady A, Adss S, Wehner G, Böttcher C, Heuer H (2019) Genetic differences in barley govern the responsiveness to N-acyl homoserine lactone. Phytob J 3:191–202

    Article  Google Scholar 

  • Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acyl-homoserine lactone-dependent quorum-sensing system in pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Khan SR, Farrand SK (2008) Induction and loss of Ti plasmid conjugative competence in response to the acyl-homoserine lactone quorum-sensing signal. J Bacteriol 190:4398–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi F, Ogawa Y, Takeuchi K, Suzuki T, Toyoda K, Shiraishi T, Ichinose Y (2006) A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation Island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol 188:8376–8384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Verma SC, Miyashiro T (2013) Quorum sensing in the squid-vibrio symbiosis. Int J Mol Sci 14(8):16368–16401

    Article  Google Scholar 

  • Visick KL, McFall-Ngai MJ (2000) An exclusive contract: specificity in the Vibrio fischeri-Euptrymna scolopes partnership. J Bacteriol 182:1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bodman SB, Majerczak DR, Coplin DLA (1998) Negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95:7687–7692

    Article  Google Scholar 

  • von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    Article  CAS  Google Scholar 

  • Watson WT, Minoque TD, Val DL, von Bodman S, Churchill ME (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694

    Article  CAS  PubMed  Google Scholar 

  • Whitehead NA, Barnard AML, Slater H, Simpson NJ, Salmond GPC (2001) Quorum sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  PubMed  Google Scholar 

  • Whitely M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum sensing-controlled genes. J Bacteriol 183:5529–5534

    Article  Google Scholar 

  • Winsdor WJ (2020) How quorum sensing works. https://asm.org/Articles/2020/June/How-QuorumSensingWorks#:~:text=Bacterial%20communication%20relies%20on%20versatile,these%20signals%20vary%20between%20species

  • Zarkani AA, Stein E, Rohrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362:446–448

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:4638–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Li M, Jia Z, Liu F, Ma H, Huang Y (2016) AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-OxoHexanoyl-homoserine lactone in Arabidopsis thaliana. Mol Plant-Microbe Interact 29:774–785

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The basis of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirik, M., Oksel, C. (2023). Using QS in Biological Control as an Alternative Method. In: Bastas, K.K., Kumar, A., Sivakumar, U. (eds) Microbial Biocontrol: Molecular Perspective in Plant Disease Management. Microorganisms for Sustainability, vol 49. Springer, Singapore. https://doi.org/10.1007/978-981-99-3947-3_12

Download citation

Publish with us

Policies and ethics