Skip to main content

Meloidogyne Species: Threat to Vegetable Produce

  • Chapter
  • First Online:
Root-Galling Disease of Vegetable Plants

Abstract

Vegetables are the richest source of vitamins, essential elements, and minerals like calcium and iron. Most of the human population are vegetarians; they fulfil their daily nutrient requirements by consuming vegetables. However, the production of vegetables is seriously hampered by several biotic stresses, viz., bacteria, fungi, nematodes, and viruses, which pose a considerable challenge to meeting future demands for such a large population. Among several biotic stresses, root-knot nematodes (RKNs) (Meloidogyne spp.) are the major threat to vegetable production. RKNs are obligate and sedentary root endoparasites of almost all vegetable crops and are considered the most damaging pests in agriculture. Since RKNs target the root vascular system, they provoke host nutrient deprivation and defective food and water transport by forming galls in the roots. They also cause aboveground symptoms of growth stunting, wilting, chlorosis in patches, and reduced crop yields. Besides the direct damage, RKNs act as a predisposing agent to other soil-borne bacterial and fungal pathogens and aggravate the problem, further leading to development of disease complexes. Considering the difficulties, researchers worldwide find eco-friendly approaches to protect vegetable production from such tiny and more damaging soil-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springer Plus, vol 1, pp 1–10. https://doi.org/10.1186/2193-1801-1-73

  • Ahmad F, Rather MA, Siddiqui MA (2010) Nematicidal activity of leaf extracts from Lantana camara L. against Meloidogyne incognita (Kofoid and White) chitwood and its use to manage roots infection of Solanum melongena L. Braz Arch Biotechnol 53:543–548

    Article  Google Scholar 

  • Ahmad G, Nishat Y, Ansari M, Khan A, Haris M, Khan AA (2021a) Eco-friendly approaches for the alleviation of root-knot nematodes. In: Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham, pp 557–575

    Google Scholar 

  • Ahmad G, Khan A, Khan AA, Ali A, Mohhamad HI (2021b) Biological control: a novel strategy for the control of the plant parasitic nematodes. A V Leeu 114:885–912

    Article  CAS  Google Scholar 

  • Ahmad G, Khan A, Ansari S, Khan AA, Elhakem A, Sami R, Mohamed HI (2022a) Management of root-knot nematode infection by using fly ash and Trichoderma harzianum in Capsicum annum plants by modulating growth, yield, photosynthetic pigments, biochemical substances, and secondary metabolite profiles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50:12591–12591

    Article  CAS  Google Scholar 

  • Ahmad S, Rehman F, Adnan M, Ahmad I, Ahmad S, Iqbal Z, Ashraf E, Kalsoom M, Ehetisham ul Haq M (2022b) Rice nematodes and their integrated management. In: Modern techniques of rice crop production. Springer, Singapore, pp 517–543

    Google Scholar 

  • Akhtar M, Mahmood I (1996) Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Appl Soil Eco 4:243–247

    Article  Google Scholar 

  • Anwar SA, McKenry MV (2007) Variability in reproduction of four populations of Meloidogyne incognita on six cultivars of cotton. J Nematol 39:105

    PubMed  PubMed Central  Google Scholar 

  • Anwar SA, Zia A, Javed N, Shakeel Q (2009) Weeds as reservoir of nematodes. Pak J Nematol 27:145–153

    Google Scholar 

  • Ayyar PNK (1926) On root knot nematodes infesting vegetables and other crops in south India. Madras Agric J 49:113–118

    Google Scholar 

  • Barber CA (1901) Dept land records and agriculture. Madras agricultural branch 2. Bull No 45:237–234

    Google Scholar 

  • Basumatary B, Mahanta B, Borah A, Dutta P (2018) Assessment of yield losses due to Meloidogyne incognita on ivy gourd (Coccinea indica L.). Ind J Nematol 48:119–121

    Google Scholar 

  • Berkeley MJ (1855) Vibrio forming excrescences on the roots of cucumber plants. Gard Chron 14:220

    Google Scholar 

  • Bharali A, Bhagawati B, Uday K (2019) Bio-efficacy of native bio-agents and bio-fertilisers for the management of root-knot nematode Meloidogyne incognita infecting black gram Vigna mungo. Int J Curr Microbio Appl Sci 8:1484–1501

    Article  CAS  Google Scholar 

  • Bhati SSB, Baheti BL (2021) Estimation of avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house. J Agric Appl Biol 2:35–40

    Article  Google Scholar 

  • Bontempo AF, Lopes EA, Fernandes RH, Freitas LGD, Dallemole-Giaretta R (2017) Dose-response effect of Pochonia chlamydosporia against Meloidogyne incognita on carrot under field conditions. Revista Caatinga 30:258–262

    Article  Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34:201–225

    Article  CAS  PubMed  Google Scholar 

  • Chandra B, Khan MR (2011) Dynamics of soil nematodes in vegetable-based crop sequences in West Bengal. In J Pl Protec Res 51:7–13

    Google Scholar 

  • Chandra P, Sao R, Gautam SK, Poddar AN (2010) Initial population density and its effect on the pathogenic potential and population growth of the root-knot nematode Meloidogyne incognita in four species of cucurbits. Asian J Plant Patho 4:1–15

    Article  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a Nano carrier. ACS Nano 11:4719–4730

    Article  CAS  PubMed  Google Scholar 

  • Colagiero M, Rosso LC, Ciancio A (2018) Diversity and bio-control potential of bacterial consortia associated to root-knot nematodes. Biol Control 120:11–16

    Article  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Article  Google Scholar 

  • d’Errico G, Marra R, Crescenzi A, Davino SW, Fanigliulo A, Woo SL, Lorito M (2019) Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two synthetic nematicides in two consecutive crop cycles in greenhouse. Crop Prot 122:159–164

    Article  Google Scholar 

  • Davis EL, Haegeman A, Kikuchi T (2011) Degradation of the plant cell wall by nematodes. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 255–272

    Google Scholar 

  • Decraemer W, Hunt DJ (2013) Structure and classification. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI, Wallingford, pp 3–39

    Chapter  Google Scholar 

  • Devi S, Das D (2016) Effect of organic amendments on root-knot nematode (Meloidogyne incognita) in cucumber. Pest Manag Hort Ecosyst 22:176–181

    Google Scholar 

  • Dhaliwal GS, Koul O (2007) Biopesticides and pest management: conventional and biotechnological approaches. Kalyani Publishers, New Delhi

    Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103:592–600

    Article  CAS  Google Scholar 

  • El-Nagdi WMA, Youssefi MMA, Abd-El-Khair H, Abd Elgawad MMM, Dawood MG (2019) Effectiveness of Bacillus subtilis, B. pumilus, Pseudomonas fluorescens on Meloidogyne incognita infecting cowpea. Pak J Nematol 37:35–43

    Article  Google Scholar 

  • Escobar C, Barcala M, Cabrera J, Fenoll C (2015) Overview of root-knot nematodes and giant cells. Adv Bot Res 73:1–32

    Article  Google Scholar 

  • Eves-van den Akker S, Birch PR (2016) Opening the effector protein toolbox for plant–parasitic cyst nematode interactions. Mol Pl 9:1451–1453

    Article  CAS  Google Scholar 

  • FAO (2018) Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT, 2018)

    Google Scholar 

  • FAO (2019) Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT, 2019)

    Google Scholar 

  • FAO (2020) Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT, 2020)

    Google Scholar 

  • Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Pl Sci 11:1125

    Article  Google Scholar 

  • Fredrickson JK, ZacharaJM KDW, Kukkadapu RK, McKinley JP, Heald SM, Plymale AE (2004) Reduction of TcO4-by sediment-associated biogenic Fe (II). Geochim Cosmochim Acta 68:3171–3187

    Article  CAS  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:1–11

    Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    Article  CAS  PubMed  Google Scholar 

  • Gaur HS (1975) Crop damage in relation to the density of nematode population and an integrated approach of nematode population management. Ph.D. Thesis, IARI, New Delhi, pp 184

    Google Scholar 

  • Gaur HS (2006) Approaches for alternation of soil environment for management of plant parasitic nematodes. In: Gaur HS, Jain RK, Ganguly S, Sirohi A, Kamra A (eds) Nematode biodiversity, identification and role of agriculturally useful nematodes in soil health, dynamics, of nematode community structure in major cropping systems and relevance in integrated nematode management. Division of Nematology, Indian Agricultural Research Institute, New Delhi pp 147–159

    Google Scholar 

  • Gaur HS, Dhingra A (1991) Management of Meloidogyne incognita and Rotylenchulus reniformis in nursery beds by soil solarisation and organic amendment. Revue de nematologie 14:190–197

    Google Scholar 

  • Gaur HS, Perry RN (1991) The biology and control of the plant parasitic nematode, Rotylenchulus reniformis. In: Evans K (ed) Agricultural zoological review. Intercept Ltd., London, vol 4, pp 177–211

    Google Scholar 

  • Ghule TM, Singh A, Khan MR (2014) Root knot nematodes: threat to Indian agriculture. Pop Kheti 2:126–130

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1

    Article  Google Scholar 

  • Gorny AM, Ye W, Cude S, Thiessen L (2021) Soybean root-knot nematode: a diagnostic guide. Pl H Prog 22:164–175

    Google Scholar 

  • Goswami BK, Meshram N (1991) Studies on comparative efficacy of mustard and karanj oil seed cakes with a nematicide, carbofuran against root-knot nematode, Meloidogyne incognita in tomato. In J Nematol 21:66–70

    Google Scholar 

  • Gowda TM, Rai AB, Singh B (2017) Technical bulletin No. 76. IIVR, Varanasi, p 32

    Google Scholar 

  • Gowda MT, Rai AB, Singh B (2019) Root knot nematodes menace in vegetable crops and their management in India: a review. Veg Sci 46:1–16

    Google Scholar 

  • Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Pl Sci 24:227–247

    Article  CAS  Google Scholar 

  • Hallmann J, Meressa BH (2018) 10 Nematode parasites of vegetables. Plant parasitic nematodes in subtropical and tropical agriculture, 346

    Google Scholar 

  • Hallmann J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonist. In: Root-knot nematodes, p 380

    Google Scholar 

  • Haque MM, Gaur HS (1985) Effect of multiple cropping sequences on the dynamics of nematode population and crop performance. In J Nematol 15:262–263

    Google Scholar 

  • Haris M, Shakeel A, Ansari, MS, Hussain T, Khan AA, Dhankar R (2021) Sustainable crop production and improvement through bio-prospecting of fungi. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology. Academic Press, pp 407–428

    Google Scholar 

  • Herrera-Parra E, Cristóbal-Alejo J, Ramos-Zapata JA (2017) Trichoderma strains as growth promoters in Capsicum annuum and as bio-control agents in Meloidogyne incognita. Chil J Ag Res 77:318–324

    Article  Google Scholar 

  • Hore J, Roy K, Maiti AK (2018) Evaluation of bio-nematon (Purpureocillium lilacinum 1.15% WP) against root-knot nematode (Meloidogyne incognita) in tomato. J Entomo Zoo Stud 6:1700–1704

    Google Scholar 

  • Hunt DJ, Handoo ZA (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. Cap. 3. CAB International, Wallingford, pp 55–88

    Chapter  Google Scholar 

  • Hussain M, Zouhar M, Rysanek P (2018) Suppression of Meloidogyne incognita by the entomopathogenic fungus Lecanicillium muscarium. Pl Dis 102:977–982

    Article  Google Scholar 

  • Hussain T, Haris M, Shakeel A, Ahmad G, Khan AA, Khan MA (2020) Bio-nematicidal activities by culture filtrate of Bacillus subtilis Hussain T-AMU: new promising biosurfactant bioagent for the management of root galling caused by Meloidogyne incognita. Vegetos 33:229–238

    Article  Google Scholar 

  • Hussain T, Khan AA (2020) Bacillus firmus HussainT:Lab.66, a new biosurfactant bioagent having potential bio-nematicidal activity against root knot nematode Meloidogyne incognita. National Conference on Recent Advances in Biological Science (NCRABS 2020) held on 5th March, 2020, organized by Dept. of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia University, New Delhi, OP 25, p 42

    Google Scholar 

  • Hussain T, Shakeel A, Haris M, Ahmad G, Khan AA (2019) First report on induction of resistance to root-knot nematode (Meloidogyne incognita) by DL-beta aminobutyric acid under abiotic stress (Fly Ash). Agricultura 109(1–2):121–125

    Google Scholar 

  • Jain RK, Bhatti DS (1987) Population development of root-knot nematode (Meloidogyne javanica) and tomato yield as influenced by summer ploughings. Trop Pest Manage 33:122–125

    Article  Google Scholar 

  • Jain RK, Mathur KN, Singh RV (2007) Estimation of losses due to plant parasitic nematodes on different crops in India. In J Nematol 37:219–221

    Google Scholar 

  • Jamal Q, Cho JY, Moon JH, Munir S, Anees M, Kim KY (2017) Identification for the first time of cyclo (d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a nematocide for control of Meloidogyne incognita. Molecules 22:1839

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Pl Pathol 14:946–961

    Article  Google Scholar 

  • Kaskavalci G (2007) Effects of soil solarisation and organic amendment treatments for controlling Meloidogyne incognita in tomato cultivars in Western Anatolia. Turk J Agric For 31:159–167

    Google Scholar 

  • Kaur SG, Dhaliwal MS, Cheema DS, Jindal SK, Gaikwad AK (2014) Screening of tomato (Solanum lycopersicum L.) germplasm for root-knot nematode resistance using conventional and molecular marker techniques. In J Nematol 44:56–61

    Google Scholar 

  • Kavitha J, Jonathan EI, Umamaheswari R (2007) Field application of Pseudomonas fluorescens, Bacillus subtilis and Trichoderma viride for the control of Meloidogyne incognita (Kofoid and White) Chitwood on sugar beet. J Bio Cont 21:211–215

    Google Scholar 

  • Khan MR (2008) Current options for managing nematodes pest of crops in India. Department of Agricultural Entomology, West Bengal

    Google Scholar 

  • Khan MR (2015) Nematode diseases of crops in India. In: Recent advances in the diagnosis and management of plant diseases. Springer, New Delhi, pp 183–224

    Google Scholar 

  • Khan A, Khan AA (2021) Evaluation of cabbage cultivars through screening against root-knot Nematode, Meloidogyne incognita. Res J Ag Sci 12:1767–1772

    Google Scholar 

  • Khan MR, Jain RK, Singh RV, Pramanik A (2010) Economically important plant parasitic nematodes ATLAS. Directorate of Information and Publications of Agriculture Krishi Anusandhan Bhavan 1, Pusa New Delhi, pp 1–145

    Google Scholar 

  • Khan MR, Jain RK, Ghule TM, Pal S (2014) Root knot nematodes in India-a comprehensive monograph. All India Coordinated Research Project on Plant Parasitic nematodes with Integrated approach for their Control, Indian Agricultural Research Institute, New Delhi, pp 1–78

    Google Scholar 

  • Khan F, Asif M, Khan A, Tariq M, Siddiqui MA (2018) Screening of carrot cultivars against root-knot nematode Meloidogyne incognita. Phytopathol 71:415–421

    Google Scholar 

  • Khan A, Ahmad G, Haris M, Khan AA (2022) Bio-organics management: novel strategies to manage root-knot nematode, Meloidogyne incognita pest of vegetable crops. Gesunde Pflanzen 75:193–209. https://doi.org/10.1007/s10343-022-00679-2

    Article  Google Scholar 

  • Khan A, Khan A, Ali A, Fatima S, Siddiqui MA (2023) Root-knot nematodes (Meloidogyne spp.): biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen:1–19. https://doi.org/10.1007/s10343-023-00886-5

  • Kim TY, Jang JY, Yu NH, Chi WJ, Bae CH, Yeo JH, Kim JC (2018) Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. P Manag Sci 74:384–391

    CAS  Google Scholar 

  • Kiriga AW, Haukeland S, Kariuki GM, Coyne DL, Beek NV (2018) Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biol Control 119:27–32

    Article  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23:279–288

    Article  CAS  PubMed  Google Scholar 

  • Lebrigand K, He LD, Thakur N, Arguel MJ, Polanowska J, Henrissat B, Ewbank JJ (2016) Comparative genomic analysis of Drechmeria coniospora reveals core and specific genetic requirements for fungal endoparasitism of nematodes. PLoS Genet 12:e1006017

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Kim KY (2016) Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J Phytopathol 164:29–39

    Article  CAS  Google Scholar 

  • Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ (2015) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu HJ, Li JY, Wang C, Chen SL, Yan SZ (2019) Effects of the endophytic bacteria Bacillus cereus BCM2 on tomato root exudates and Meloidogyne incognita infection. Pl Dis 103:1551–1558

    Google Scholar 

  • Lopez-Llorca LV, Macia-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Integrated management and bio-control of vegetable and grain crops nematodes. Springer, Dordrecht, pp 51–76

    Google Scholar 

  • Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML (2014) The complex hybrid origins of the root not nematodes revealed through comparative genomics. PeerJ 2:e356

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Mo M, Huang X, Li X, Zhang K (2004) Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 96:1218–1224

    Article  PubMed  Google Scholar 

  • Luo H, Xiong J, Zhou Q, Xia L, Yu Z (2013) The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioural response of Caenorhabditis elegans. App Microbio Biot 97:10135–10142

    Article  CAS  Google Scholar 

  • Milligan BS, Bodeau J, Yaghoobi J, Kaloshian I, Zabel WVM (1998) The root-knot nematode resistance gene Mi from tomato is a member of the Leucine Zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari S, Leonetti P (2019) Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. PLoS One 14:213230

    Article  Google Scholar 

  • Mukhtar T (2018) Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pak J Zoo 50:1589–1592

    Article  Google Scholar 

  • Mukhtar T, Kayani MZ (2019) Growth and yield responses of fifteen cucumber cultivars to root-knot nematode (Meloidogyne incognita). Acta Sci Pol Hortorum Cultus 18:45–52

    Article  Google Scholar 

  • Mukhtar T, Hussain MA, Kayani MZ, Aslam MN (2014) Evaluation of resistance to root-knot nematode (Meloidogyne incognita) in okra cultivars. Crop Prot 56:25–30

    Article  CAS  Google Scholar 

  • Nayak DK, Pandey R (2015) Screening and evaluation of brinjal varieties /cultivars against root-knot nematode, Meloidogyne incognita. Int J Adv Res 3:476–479

    Google Scholar 

  • Nisha MS, Sheela MS (2016) Effect of fungal egg parasite, Paecilomyces lilacinus (Thom.) samson on Meloidogyne incognita in brinjal. In J Nematol 46:157–159

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Patel GJ, Shah HM, Patel DJ (1979) Reaction of some tomato cultivars to root-knot nematode. In J Nematol 9:60–61

    Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Phani V, Khan MR, Dutta TK (2021) Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Prot 144:105573

    Article  Google Scholar 

  • Prakob W, Nguen-Hom J, Jaimasit P, Silapapongpri S, Thanunchai J, Chaisuk P (2009) Biological control of lettuce root knot disease by use of Pseudomonas aeruginosa, Bacillus subtilis and Paecilomyces lilacinus. J Agric Technol 5:179–191

    Google Scholar 

  • Prasad SSV, Tilak KVBR, Gollakota RG (1972) Role of Bacillus thuringiensis var. thuringiensis on the larval survivability and egg hatching of Meloidogyne spp. the causative agent of root-knot disease. J Inver Pathol 20:377–378

    Article  Google Scholar 

  • Qiu S, Maquilan MAD, Chaparro JX, Brito JA, Beckman TG, Dickson DW (2021) Susceptibility of Flordaguard peach rootstock to a resistant-breaking population of Meloidogyne floridensis and two populations of Meloidogyne arenaria. J Nematol 53:1

    Article  Google Scholar 

  • Radhakrishnan R, Hashem A, AbdAllah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Umamaheswari R, Priti K, Rajinikanth R, Vidyashree P, Prabhu KM (2015) Nematode management in vegetable crops. IIHR Technical Bulletin No.: 47. Published by Director ICAR- IIHR, Bengaluru

    Google Scholar 

  • Rather MA, Ahmad F, Siddiqui MA (2008) Nematicidal effect of chopped leaves of some selected plants against root-knot nematode, Meloidogyne incognita on tomato. Int J Pl Sci 3:339–341

    Google Scholar 

  • Ravishankar M (2007) Nematode development and biochemical changes in genotypes of chilli (Capsicum spp.) infected with root knot nematode (Meloidogyne incognita race 1). Ph.D. Thesis, IARI New Delhi, pp 60

    Google Scholar 

  • Rawal S (2020) A review on root-knot nematode infestation and its management practices through different approaches in tomato. Trop Agroecosyst 1:92–96

    Article  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BP (2020) Screening for novel bio-control agents applicable in plant disease management–a review. Biol Control 144:104240

    Article  CAS  Google Scholar 

  • Reddy PP (2021) Nematode diseases of crops and their management. Springer Singapore

    Book  Google Scholar 

  • Reddy YS, Sellaperumal C, Prasanna HC, Yadav A, Kashyap SP, Singh S, Rai N, Singh M Singh B (2018) Screening of tomato genotypes against root-knot nematode and validation of Mi 1 gene linked markers. Proc Natl Acad Sci India, Sect B Boil Sci 88: 65–72

    Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematodes related host-plant resistance. Annu Rev Phytopathol 33:199–221

    Article  CAS  PubMed  Google Scholar 

  • Robinson AF (2002) Soil and plant interactions’ impact on plant-parasitic nematode host finding and recognition. The behavioural ecology of parasites. CAB International, Wallingford, pp 89–110

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting 8 rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Shakeel A, Khan AA, Haris M (2020) Multifaceted strategies used by root-knot nematodes to parasitise plants-a review. Phyton 89:205

    Article  Google Scholar 

  • Shaltoot A (2001) Economic loss resulting from nematode-infected vegetables and fruits. In: Disease problems caused by nematodes in horticultural farms in Egypt Proceedings of a workshop (In Arabic), Menoufia Univ, pp 43–50

    Google Scholar 

  • Sharma A, Haseeb A, Abuzar S (2006) Screening of field pea (Pisum sativum) selections for their reactions to root-knot nematode (Meloidogyne incognita). J Zhej Uni Sci B 7:209–214

    Article  Google Scholar 

  • Sikandar A, Zhang MY, Zhu XF, Wang YY, Ahmed M, Iqbal MF, Javeed A, Xuan YH, Fan HY, Liu XY, Chen LJ, Duan YX (2019) Efficacy of Penicillium chrysogenum strain SNEF1216 against root-knot nematodes (Meloidogyne incognita) in cucumber (Cucumis sativus L.) under greenhouse conditions. Appl Eco Envi Res 17(5):2451–12464

    Google Scholar 

  • Sikora RA, Fernández E (2005) Nematodes parasites of vegetables. In: Liuc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 319–392

    Chapter  Google Scholar 

  • Sikora RA, Coyne D, Hallmann J, Timper P (eds) (2018) Plant parasitic nematodes in subtropical and tropical agriculture. CABI

    Google Scholar 

  • Silva SD, Carneiro RM, Faria M, Souza DA, Monnerat RG, Lopes RB (2017) Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. J Nematol 49:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S (2013) Integrated approach for the management of the root-knot nematode, Meloidogyne incognita, on eggplant under field conditions. Nematol 15:747–757

    Article  Google Scholar 

  • Singh T, Patel BA (2015) Management of root-knot nematode (Meloidogyne incognita) in bottle gourd using different botanicals in pots. J Parasit Dis 39:441–445

    Article  PubMed  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Steinmetz KA, Potter JD (1996) Vegetables, fruit, and cancer prevention: a review. J Amer Diet Assoc 96:1027–1039

    Article  CAS  Google Scholar 

  • Sundresh HN, Setty KGH (1977) Crop rotation as an effective and practical means of controlling root-knot nematode Meloidogyne incognita Chitwood. Curr Res 6:157–158

    Google Scholar 

  • Swaranakumari N, Sivakumar CV (2012) Bio-efficacy of obligate bacterial parasite, pasteuria penetrans against root-knot nematode, Meloidogyne incognita infestation in chilli. In J Nematol 42:42–45

    Google Scholar 

  • Swarnakumari N (2017) Role of bacterial bioagent, Pasteuria penetrans in the management of root knot nematode, Meloidogyne incognita by altering the lifecycle. Pest Manag Hort Ecosyst 23:76–80

    Google Scholar 

  • Szabo M, Csepregi K, Galber M, Viranyi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode- trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128

    Article  Google Scholar 

  • Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RH, Hedden P (2013) Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS One 8:61259

    Article  Google Scholar 

  • Trifonova Z, Karadjova J, Georgieva T (2009) Fungal parasites of the root-knot nematodes Meloidogyne spp. in southern Bulgaria. Est J Eco 58

    Google Scholar 

  • Tyler J (1933) Development of the root-knot nematode as affected by temperature. Hilgardia 7:389–415

    Article  Google Scholar 

  • Umashankar KN, Krishnappa K, Reddy BMR, Ravichandra NG, Karuna K (2005) Intercropping for the management of root-knot nematode, Meloidogyne incognita in vegetable-based cropping systems. In J Nematol 35:46–49

    Google Scholar 

  • Verma AC, Anwar A (1996) Assessment of yield loss due to Meloidogyne incognita in pointed gourd (Trichosanthes dioica Roxb.). Af Asian J Nematol 6:92–93

    Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, DeWaele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Walia RK, Kumar V, Kumar P (2016) Major nematode problems and technologies generated for their management. Project coordinating cell, ICAR-IARI, New Delhi 110012:1–34

    Google Scholar 

  • Wesemael W, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13:3–16

    Article  Google Scholar 

  • Widmer TL, Ludwig JW, Abawi GS (1999) The northern root-knot nematode on carrot, lettuce, and onion in New York. New York State Agricultural Experiment Station

    Google Scholar 

  • Wieczorek K, Elashry A, Quentin M, Grundler FMW, Favery B, Seifert GJ, Bohlmann H (2014) A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes. Mol Pl Microbe Int 27:901–912

    Article  CAS  Google Scholar 

  • Williamson VM (1998) Root knot resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Yu Z (2015) The diverse nematicidal properties and bio-control efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Inve Pathol 125:73–80

    Article  CAS  Google Scholar 

  • Zhang S, Gan Y, Xu B (2015) Bio-control potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. App Soil Eco 94:21–29

    Article  Google Scholar 

  • Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J (2020) Fungi–nematode interactions: diversity, ecology, and bio-control prospects in agriculture. J Fungi 6:206

    Article  Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are very thankful to the Chairman, Department of Botany, AMU, Aligarh, India, for moral encouragement, upliftment, and support throughout this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Ansari, S.A., Haris, M., Hussain, T., Khan, A.A. (2023). Meloidogyne Species: Threat to Vegetable Produce. In: Ahmad, F., Blázquez, G.N. (eds) Root-Galling Disease of Vegetable Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-3892-6_2

Download citation

Publish with us

Policies and ethics