Skip to main content

Role of Stem Cells as a Protective Agent against Neurological Complications

  • Chapter
  • First Online:
Applications of Stem Cells and derived Exosomes in Neurodegenerative Disorders

Abstract

Different degrees of paralysis and/or loss of consciousness and feeling are caused by neurodegenerative diseases that develop as neurons gradually lose their structure and function. The lack of efficient treatments for neurodegenerative diseases has a severe negative social and economic influence. Regenerative cell treatment, commonly referred to as stem cell therapy, has offered a fantastic chance to research potentially effective cutting-edge methods for treating neurodegenerative illnesses in the previous 20 years. This is because stem cells can repair damaged neural tissue by replacing lost or damaged cells with differentiated cells, promoting a regenerative environment, or protecting already healthy neurons and glial cells from damage. To develop practical and effective treatments for neurodegenerative disease augmentation by a greater knowledge of stem cell technologies and further research in this area is inevitable. Considerably, this chapter provides an overview of the different stem cell types, stem cell-based treatments for neurodegenerative disorders and new developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, LaFerla FM, Blurton-Jones M (2015) Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss. Hippocampus 25(7):813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadian-Moghadam H, Sadat-Shirazi M-S, Zarrindast M-R (2020) Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 42:1073–1101

    Article  CAS  PubMed  Google Scholar 

  • Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS (2019) Stem cell therapy for neurological disorders. South African Medical Journal 109(8 Supplement 1):S71–S78

    Google Scholar 

  • Ayeni EA, Aldossary AM, Ayejoto DA, Gbadegesin LA, Alshehri AA, Alfassam HA, Tawfik EA et al (2022) Neurodegenerative diseases: implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int J Environ Res Public Health 19(19):12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, O’Connor M et al (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6(1):1–16

    Article  Google Scholar 

  • Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386(10004):1672–1682

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker RA, Drouin-Ouellet J, Parmar M (2015) Cell-based therapies for Parkinson disease—past insights and future potential. Nat Rev Neurol 11(9):492–503

    Article  CAS  PubMed  Google Scholar 

  • Blanquer M, Moraleda JM, Iniesta F, Gómez-Espuch J, Meca-Lallana J, Villaverde R, Bleda P et al (2012) Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells 30(6):1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF, LaFerla FM et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci 106(32):13594–13599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brundin P, Li J-Y, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson's disease pathology spread. Nat Rev Neurosci 9(10):741–745

    Article  CAS  PubMed  Google Scholar 

  • Capozzo R, Sassi C, Hammer MB, Arcuti S, Zecca C, Barulli MR, Seripa D et al (2017) Clinical and genetic analyses of familial and sporadic frontotemporal dementia patients in southern Italy. Alzheimers Dement 13(8):858–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xiong M, Dong Y, Haberman A, Cao J, Liu H, Zhang S-C et al (2016) Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18(6):817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung T-H, Hsu S-C, Wu S-H, Hsiao J-K, Lin C-P, Yao M, Huang D-M (2018) Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson's disease. Nanoscale 10(6):2998–3007

    Article  CAS  PubMed  Google Scholar 

  • Connor B (2018) Concise review: the use of stem cells for understanding and treating Huntington's disease. Stem Cells 36(2):146–160

    Article  PubMed  Google Scholar 

  • d’Angelo M, Cimini A, Castelli V (2020) Insights into the effects of mesenchymal stem cell-derived secretome in Parkinson’s disease. Int J Mol Sci 21(15):5241

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Morizane A et al (2020) Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat Commun 11(1):3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M, Hallmann A-L, Reinhardt P, Araúzo-Bravo MJ, Korr S, Röpke A, Oblak AL et al (2015) Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Rep 5(1):83–96

    Article  CAS  Google Scholar 

  • Enciu AM, Nicolescu MI, Manole CG, Mureşanu DF, Popescu LM, Popescu BO (2011) Neuroregeneration in neurodegenerative disorders. BMC Neurol 11:1–7

    Article  Google Scholar 

  • Fan Y, Ng S-Y (2020) Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 9(1):1–10

    Article  CAS  Google Scholar 

  • Farag ES, Vinters HV, Bronstein J (2009) Pathologic findings in retinal pigment epithelial cell implantation for Parkinson disease. Neurology 73(14):1095–1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari R, Manzoni C, Hardy J (2019) Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiol Aging 78:98–110

    Article  PubMed  Google Scholar 

  • Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee K-H, Wong PC et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525(7567):129–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara N, Shimizu J, Takai K, Arimitsu N, Saito A, Kono T, Suzuki T et al (2013) Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci Lett 557:129–134

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 1842(8):1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Rabelo TK, Kunzler A, Gelain DP et al (2017) Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA–induced dopaminergic denervation. Sci Rep 7(1):8795

    Article  PubMed  PubMed Central  Google Scholar 

  • Golas MM (2018) Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 209:179–196

    Article  CAS  PubMed  Google Scholar 

  • Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Björklund A et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15(5):653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Xu W, Zhang H, Wang Q, Yu J, Zhang R, Wang D et al (2020) Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Res Ther 11(1):1–11

    Google Scholar 

  • Guo W, Fumagalli L, Prior R, Van Den Bosch L (2017) Current advances and limitations in modeling ALS/FTD in a dish using induced pluripotent stem cells. Front Neurosci 11:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Brownell A-L et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in parkinsonian rats. Proc Natl Acad Sci 107(36):15921–15926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedges EC, Mehler VJ, Nishimura AL (2016) The use of stem cells to model amyotrophic lateral sclerosis and frontotemporal dementia: from basic research to regenerative medicine. Stem Cells Int 2016:9279516

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyer DB, Meredith RM (2017) Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 58:23–41

    Article  CAS  PubMed  Google Scholar 

  • Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Makrantonaki E et al (2015) Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 16:1–22

    CAS  Google Scholar 

  • Jahan S, Singh S, Srivastava A, Kumar V, Kumar D, Pandey A, Pant AB et al (2018) PKA-GSK3β and β-catenin signaling play a critical role in trans-resveratrol mediated neuronal differentiation in human cord blood stem cells. Mol Neurobiol 55:2828–2839

    Article  CAS  PubMed  Google Scholar 

  • Jahan S, Kumar D, Kumar A, Rajpurohit CS, Singh S, Srivastava A, Pant AB et al (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem Biophys Res Commun 482(4):961–967

    Article  CAS  PubMed  Google Scholar 

  • Jeon I, Lee N, Li J-Y, Park I-H, Park KS, Moon J, Kwon J et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells 30(9):2054–2062

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou E, Miller BL (2014) Frontotemporal lobar degeneration: a clinical approach. Paper presented at the Seminars in neurology. Semin Neurol 34:189

    Article  PubMed  Google Scholar 

  • Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Bowles KR et al (2019) A comprehensive resource for induced pluripotent stem cells from patients with primary tauopathies. Stem cell Rep 13(5):939–955

    Article  CAS  Google Scholar 

  • Karussis D, Petrou P, Kassis I (2013) Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci 324(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kashyap MP, Kumar V, Singh AK, Tripathi VK, Jahan S, Pandey A, Pant AB et al (2015) Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 51:791–807

    Article  CAS  PubMed  Google Scholar 

  • Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Björklund A et al (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71(1):83–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Inoue H et al (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548(7669):592–596

    Article  CAS  PubMed  Google Scholar 

  • Kim E-J, Kim Y-E, Jang J-H, Cho E-H, Na DL, Seo SW, Park KH (2018) Analysis of frontotemporal dementia, amyotrophic lateral sclerosis, and other dementia-related genes in 107 Korean patients with frontotemporal dementia. Neurobiol Aging 72:186. e181–186. e187

    Article  Google Scholar 

  • Kim K-S, Kim HS, Park J-M, Kim HW, Park M-k, Lee H-S, Moon J et al (2013a) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer's disease model. Neurobiol Aging 34(10):2408–2420

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kim HJ, Koh W, Li L, Heo H, Cho H, Nakanishi M et al (2020) Modeling of frontotemporal dementia using iPSC technology. Int J Mol Sci 21(15):5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SU, Lee HJ, Kim YB (2013b) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33(5):491–504

    PubMed  Google Scholar 

  • Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Parmar M et al (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Winn SR, Liu Y-T, Mufson EJ, Sladek Jr John R, Hammang JP, Emerich DF et al (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci 91(23):10898–10902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R, Avalos P et al (2020) iPSC modeling of young-onset Parkinson’s disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med 26(2):289–299

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lee JK, Lee H, Carter JE, Chang JW, Oh W, Jin HK et al (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation. Neurobiol Aging 33(3):588–602

    Article  CAS  PubMed  Google Scholar 

  • Lee I-S, Jung K, Kim I-S, Lee H, Kim M, Yun S, In Park K et al (2015) Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 10:1–16

    Article  Google Scholar 

  • Lee J-P, Jeyakumar M, Gonzalez R, Takahashi H, Lee P-J, Baek RC, Clarke J et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13(4):439–447

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Song H, Colamarino SA, Ming G-l, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421

    Article  CAS  PubMed  Google Scholar 

  • Lilja AM, Malmsten L, Röjdner J, Voytenko L, Verkhratsky A, Ögren SO, Marutle A et al (2015) Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic 7 nicotinic receptor drugs. Neural Plast 2015:370432

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Wu CL, Lee KZ, Chen YJ, Zhang PH, Chang CY, Tsai HJ et al (2019) Extracellular Pgk1 enhances neurite outgrowth of motoneurons through Nogo66/NgR-independent targeting of NogoA. elife 8:e49175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Marsden CD et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247(4942):574–577

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Rehncrona S, Brundin P, Gustavii B, Åstedt B, Widner H, Rothwell JC et al (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease: a detailed account of methodology and a 6-month follow-up. Arch Neurol 46(6):615–631

    Article  CAS  PubMed  Google Scholar 

  • Lines G, Casey JM, Preza E, Wray S (2020) Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 109:103553

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, Zhang D et al (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22(2):321–332

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhang S-C et al (2013) Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31(5):440–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Cheung H-H (2020) Stem cell-based therapies for Parkinson disease. Int J Mol Sci 21(21):8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JS, Sakowski SA, Feldman EL (2014) Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 32(5):1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Shimo Y, Chiu S-W, Yamaguchi T, Kashihara K, Tsuboi Y, Saiki H et al (2017) Clinical manifestations of nonmotor symptoms in 1021 Japanese Parkinson's disease patients from 35 medical centers. Parkinsonism Relat Disord 38:54–60

    Article  PubMed  Google Scholar 

  • Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Serapide MF et al (2020) Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 19(3):e13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Cerdeño V, Noctor SC, Espinosa A, Ariza J, Parker P, Orasji S, Kriegstein AR et al (2010) Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell 6(3):238–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Serrano A, Björklund A (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci 20(11):530–538

    Article  PubMed  Google Scholar 

  • Mazzini L, Gelati M, Profico DC, Sgaravizzi G, Massimo PP, Muzi G, Giorgi C et al (2015) Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 13:1–16

    Article  Google Scholar 

  • Meamar R, Nasr-Esfahani MH, Mousavi SA, Basiri K (2013) Stem cell therapy in amyotrophic lateral sclerosis. J Clin Neurosci 20(12):1659–1663

    Article  CAS  PubMed  Google Scholar 

  • Mendes Filho D, de Ribeiro P, Oliveira LF, de Paula DRM, Capuano V, de Assunção TSF, da Silva VJD (2018) Therapy with mesenchymal stem cells in Parkinson disease: history and perspectives. Neurologist 23(4):141–147

    Article  PubMed  Google Scholar 

  • Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Esfahani MHN, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78(2–3):59–68

    Article  CAS  PubMed  Google Scholar 

  • Naaldijk Y, Jaeger C, Fabian C, Leovsky C, Blüher A, Rudolph L, Stolzing A et al (2017) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS 1 Alzheimer mice. Neuropathol Appl Neurobiol 43(4):299–314

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Halliday G et al (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16(6):653–661

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Kim HN, Park H-J, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer's disease model. Cell Transplant 24(6):1097–1109

    Article  PubMed  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Godbold J et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 54(3):403–414

    Article  PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Südhof TC et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park D, Yang Y-H, Bae DK, Lee SH, Yang G, Kyung J, Kim GH et al (2013) Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 34(11):2639–2646

    Article  CAS  PubMed  Google Scholar 

  • Parmar M, Grealish S, Henchcliffe C (2020) The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 21(2):103–115

    Article  CAS  PubMed  Google Scholar 

  • Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, Abramsky O et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol 73(3):337–344

    Article  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  • Piccini P, Lindvall O, Björklund A, Brundin P, Hagell P, Ceravolo R, Rehncrona S et al (2000) Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 48(5):689–695

    Article  CAS  PubMed  Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  • Puelles E (2007) Genetic control of basal midbrain development. J Neurosci Res 85(16):3530–3534

    Article  CAS  PubMed  Google Scholar 

  • Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, Choi HJ et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20(8):1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Raitano S, Ordovàs L, De Muynck L, Guo W, Espuny-Camacho I, Geraerts M, Voets T et al (2015) Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Rep 4(1):16–24

    Article  CAS  Google Scholar 

  • Raore B, Federici T, Taub J, Wu MC, Riley J, Franz CK, Johe K et al (2011) Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine 36(3):E164–E171

    Article  PubMed  Google Scholar 

  • Rosser A, Svendsen CN (2014) Stem cells for cell replacement therapy: a therapeutic strategy for HD? Mov Disord 29(11):1446–1454

    Article  PubMed  Google Scholar 

  • Saeedi P, Halabian R, Fooladi AAI (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakthiswary R, Raymond AA (2012) Stem cell therapy in neurodegenerative diseases: from principles to practice. Neural Regen Res 7(23):1822

    PubMed  PubMed Central  Google Scholar 

  • dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Cabral JMS et al (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17(12):1201–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrag A, Schott JM (2006) Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 5(4):355–363

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Saini A, Kalsan M, Kumar N, Chandra R (2016) Describing the stem cell potency: the various methods of functional assessment and in silico diagnostics. Front Cell Develop Biol 4:134

    Article  Google Scholar 

  • Sivandzade F, Cucullo L (2021) Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci 22(4):2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059

    Article  CAS  PubMed  Google Scholar 

  • Snyder BR, Cheng P-H, Yang J, Yang S-H, Huang AHC, Chan AWS (2011) Characterization of dental pulp stem/stromal cells of Huntington monkey tooth germs. BMC Cell Biol 12(1):1–8

    Article  Google Scholar 

  • Sonntag K-C, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Schweitzer J et al (2018) Pluripotent stem cell-based therapy for Parkinson’s disease: current status and future prospects. Prog Neurobiol 168:1–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A (2021) Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 895:173873

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Taupin P (2008) Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci 5(3):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Salgado AJ et al (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev Rep 11:288–297

    Article  CAS  PubMed  Google Scholar 

  • Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, Gressens P et al (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70(5):698–712

    Article  PubMed  Google Scholar 

  • Tolosa L, Pareja E, Gómez-Lechón MJ (2016) Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation 100(12):2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Truong A, Si E, Duncan T, Valenzuela M (2016) Modeling neurodegenerative disorders in adult somatic cells: a critical review. Front Biol 11:232–245

    Article  CAS  Google Scholar 

  • Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905

    Article  PubMed  Google Scholar 

  • Vay SU, Blaschke S, Klein R, Fink GR, Schroeter M, Rueger MA (2016) Minocycline mitigates the gliogenic effects of proinflammatory cytokines on neural stem cells. J Neurosci Res 94(2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu W-W, Jiang Z, Feng M-J (2020) Advances in treatment of neurodegenerative diseases: perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells 12(5):323

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Zhang J, Tsang KS, Yang H, Gao W-Q (2019) Therapeutic potential of human amniotic epithelial cells on injuries and disorders in the central nervous system. Stem Cells Int 2019:5432301

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuan AG, Luo M, Ji WD, Long DH (2009) Effects of engrafted neural stem cells in Alzheimer's disease rats. Neurosci Lett 450(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Xie ZH, Wei LF, Yang HN, Yang SN, Zhu ZY, Bi JZ et al (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res Ther 4:1–14

    Article  Google Scholar 

  • Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I (2017) Cell therapy for Parkinson’s disease. Cell Transplant 26(9):1551–1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wu H-h, Wang Y, Gu G-j, Zhang W, Xia R (2016) Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer's disease. J Neurochem 136(4):815–825

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Jiang X-F, Zhang H-Q, Sun J-H, Pei H, Ma L-N, Li H et al (2021) Interactions between glial cells and the blood-brain barrier and their role in Alzheimer's disease. Ageing Res Rev 72:101483

    Article  PubMed  Google Scholar 

  • Zilka N, Zilkova M, Kazmerova Z, Sarissky M, Cigankova V, Novak M (2011) Mesenchymal stem cells rescue the Alzheimer's disease cell model from cell death induced by misfolded truncated tau. Neuroscience 193:330–337

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayeem, U. et al. (2023). Role of Stem Cells as a Protective Agent against Neurological Complications. In: Jahan, S., Siddiqui, A.J. (eds) Applications of Stem Cells and derived Exosomes in Neurodegenerative Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-3848-3_4

Download citation

Publish with us

Policies and ethics