Skip to main content

Evolutionary Machine Learning in Robotics

  • Chapter
  • First Online:
Handbook of Evolutionary Machine Learning

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

In this chapter, we survey the most significant applications of EML to robotics. We first highlight the salient characteristics of the field in terms of what can be optimized and with what aims and constraints. Then we survey the large literature concerning the optimization, by the means of evolutionary computation, of artificial neural networks, traditionally considered a form of machine learning, used for controlling the robots: for easing the comprehension, we categorize the various approaches along different axes, as, e.g., the robotic task, the representation of the solutions, the evolutionary algorithm being employed. We then survey the many usages of evolutionary computation for optimizing the morphology of the robots, including those that tackle the challenging task of optimizing the morphology and the controller at the same time. Finally, we discuss the reality gap problem that consists in a potential mismatch between the quality of solutions found in simulations and their quality observed in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akinci, K., Philippides, A.: Evolving recurrent neural network controllers by incremental fitness shaping. In: Volume ALIFE 2019: the 2019 Conference on Artificial Life of Artificial Life Conference Proceedings, pp. 416–423 (2019)

    Google Scholar 

  2. Albrigtsen, S.I., Imenes, A., Goodwin, M., Jiao, L., Nunavath, V.: Neuroevolution of actively controlled virtual characters—an experiment for an eight-legged character. In: Pimenidis, E., Jayne, C. (eds.) Engineering Applications of Neural Networks, pp. 94–105. Springer International Publishing, Cham (2018)

    Google Scholar 

  3. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., Floreano, D.: Robogen: robot generation through artificial evolution. In: Volume ALIFE 14: the Fourteenth International Conference on the Synthesis and Simulation of Living Systems of Artificial Life Conference Proceedings, pp. 136–137 (2014)

    Google Scholar 

  4. Auerbach, J.E., Bongard, J.C.: Evolving CPPNs to grow three-dimensional physical structures. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, pp. 627–634. Association for Computing Machinery, New York, NY, USA (2010)

    Google Scholar 

  5. Badwe, A.S., Gudi, R.D., Patwardhan, R.S., Shah, S.L., Patwardhan, S.C.: Detection of model-plant mismatch in MPC applications. J. Process. Control. 19(8), 1305–1313 (2009). Special Section on Hybrid Systems: Modeling, Simulation and Optimization

    Google Scholar 

  6. Badwe, A.S., Patwardhan, R.S., Shah, S.L., Patwardhan, S.C., Gudi, R.D.: Quantifying the impact of model-plant mismatch on controller performance. J. Process. Control. 20(4), 408–425 (2010)

    Article  Google Scholar 

  7. Bartoli, A., Castelli, M., Medvet, E.: Weighted hierarchical grammatical evolution. IEEE Trans. Cybern. 50(2), 476–488 (2020)

    Google Scholar 

  8. Bartz-Beielstein, T., Preuss, M.: Experimental research in evolutionary computation. In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’07, pp. 3001–3020. Association for Computing Machinery, New York, NY, USA (2007)

    Google Scholar 

  9. Boeing, A., Bräunl, T.: Leveraging multiple simulators for crossing the reality gap. In: 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1113–1119 (2012)

    Google Scholar 

  10. Bojeri, A., Iacca, G.: Evolutionary optimization of drone trajectories based on optimal reciprocal collision avoidance. In: 2020 27th Conference of Open Innovations Association (FRUCT), pp. 18–26 (2020)

    Google Scholar 

  11. Bongard, J., Lipson, H.: Once more unto the breach: co-evolving a robot and its simulator. In: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE9), pp. 57–62 (2004)

    Google Scholar 

  12. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Sci. 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  13. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: the New Species, pp. 237–258. Springer, Japan, Tokyo (2003)

    Google Scholar 

  14. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Front. Robot. AI. 5 (2018)

    Google Scholar 

  15. Bucher, D., Haspel, G., Golowasch, J., Nadim, F.: Central pattern generators, pp. 1–12. John Wiley & Sons, Ltd (2015)

    Google Scholar 

  16. Bull, M., Kroo, L.A., Prakash, M.: Excitable mechanics embodied in a walking cilium. In: APS March Meeting Abstracts, volume 2022 of APS Meeting Abstracts, pp. Y04.002 (2022)

    Google Scholar 

  17. Cáceres, C., Rosário, J.M., Amaya, D.: Approach of kinematic control for a nonholonomic wheeled robot using artificial neural networks and genetic algorithms. In: 2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Cáceres Flórez, C.A., Rosário, J.M., Amaya, D.: Control structure for a car-like robot using artificial neural networks and genetic algorithms. Neural Comput. Appl. 32(20), 15771–15784 (2020)

    Google Scholar 

  19. Cazenille, L., Bredeche, N., Hamann, H., Stradner, J.: Impact of neuron models and network structure on evolving modular robot neural network controllers. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12, pp. 89–96. Association for Computing Machinery, New York, NY, USA (2012)

    Google Scholar 

  20. Chapelle, F., Bidaud, P.: A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 4, pp. 3364–3369 (2001)

    Google Scholar 

  21. Cheney, N., Bongard, J., Lipson, H.: Evolving soft robots in tight spaces. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, pp. 935–942. Association for Computing Machinery, New York, NY, USA (2015)

    Google Scholar 

  22. Cheney, N., Bongard, J., SunSpiral, V., Lipson, H.: Scalable co-optimization of morphology and control in embodied machines. J. R. Soc. Interface. 15(143), 20170937 (2018)

    Google Scholar 

  23. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, pp. 167–174. Association for Computing Machinery, New York, NY, USA (2013)

    Google Scholar 

  24. Chou, C.-Y., Juang, C.-F.: Navigation of an autonomous wheeled robot in unknown environments based on evolutionary fuzzy control. Inven. 3(1) (2018)

    Google Scholar 

  25. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771 (2009)

    Google Scholar 

  26. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Sci. 307(5712), 1082–1085 (2005)

    Google Scholar 

  27. Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K.O., Clune, J.: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 5032–5043. Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  28. Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., Laschi, C.: Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Robot. 5(4), 475–495 (2018). PMID: 29985740

    Google Scholar 

  29. Custode, L.L., Iacca, G.: A co-evolutionary approach to interpretable reinforcement learning in environments with continuous action spaces. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2021)

    Google Scholar 

  30. D’Ambrosio, D.B., Stanley, K.O.: Generative encoding for multiagent learning. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 819-826. Association for Computing Machinery, New York, NY, USA (2008)

    Google Scholar 

  31. Das, S., Shankar, A., Aggarwal, V.: Training spiking neural networks with a multi-agent evolutionary robotics framework. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21, pp. 858–865. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  32. De Carlo, M., Ferrante, E., Zeeuwe, D., Ellers, J., Meynen, G., Eiben, A.E.: Heritability in morphological robot evolution (2021). arXiv:2110.11187

  33. Di Paolo, E.: Spike-timing dependent plasticity for evolved robots. Adapt. Behav. 10(3–4), 243–263 (2002)

    Google Scholar 

  34. Soorati, M.D., Hamann, H.: The effect of fitness function design on performance in evolutionary robotics: the influence of a priori knowledge. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, pp. 153–160. Association for Computing Machinery, New York, NY, USA (2015)

    Google Scholar 

  35. Dolinsky, J.-U., Jenkinson, I.D., Colquhoun, G.J.: Application of genetic programming to the calibration of industrial robots. Comput. Ind. 58(3), 255–264 (2007)

    Google Scholar 

  36. Doncieux, S., Bredeche, N., Mouret, J.-B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI. 2 (2015)

    Google Scholar 

  37. Doncieux, S., Bredeche, N., Mouret, J.-B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI. 2 (2015)

    Google Scholar 

  38. Downing, K.L.: Adaptive genetic programs via reinforcement learning. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, GECCO’01, pp. 19-26. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

    Google Scholar 

  39. Eiben, A.E., Hart, E.: If it evolves it needs to learn. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20, pp. 1383–1384. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  40. Eiben, A.E.: Real-world robot evolution: why would it (not) work?. Front. Robot. AI. 8 (2021)

    Google Scholar 

  41. Eiben, A.E., Smith, J.: From evolutionary computation to the evolution of things. Nat. 521(7553), 476–482 (2015)

    Google Scholar 

  42. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  43. Ferigo, A., Iacca, G., Medvet, E.: Beyond body shape and brain: evolving the sensory apparatus of voxel-based soft robots. In: Castillo, P.A., Laredo, J.L.J. (eds.) Applications of Evolutionary Computation, pp. 210–226. Springer International Publishing, Cham (2021)

    Google Scholar 

  44. Ferigo, A., Iacca, G., Medvet, E., Pigozzi, F.: Evolving Hebbian learning rules in voxel-based soft robots. IEEE Trans. Cogn. Dev. Syst. 1–1 (2022)

    Google Scholar 

  45. Ferigo, A., Medvet, E., Iacca, G.: Optimizing the sensory apparatus of voxel-based soft robots through evolution and babbling. SN Comput. Sci. 3(2), 109 (2021)

    Google Scholar 

  46. Ferigo, A., Soros, L.B., Medvet, E., Iacca, G.: On the entanglement between evolvability and fitness: an experimental study on voxel-based soft robots. In: Volume ALIFE 2022: the 2022 Conference on Artificial Life of Artificial Life Conference Proceedings (2022)

    Google Scholar 

  47. Floreano, D., Mattiussi, C.: Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi, T. (eds.) Evolutionary Robotics. From Intelligent Robotics to Artificial Life, pp. 38–61. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  48. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated agents. In: Proceeding of the Fourth International Conference on Simulation of Adaptive Behavior (SAB), From Animals to Animats. ETH Zürich (1996)

    Google Scholar 

  49. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Google Scholar 

  50. Gaier, A., Ha, D.: Weight agnostic neural networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2019)

    Google Scholar 

  51. Gibson, J.J.: The Ecological Approach to Visual Perception: Classic Edition. Psychology press (2014)

    Google Scholar 

  52. Glette, K., Johnsen, A.L., Samuelsen, E.: Filling the reality gap: using obstacles to promote robust gaits in evolutionary robotics. In: 2014 IEEE International Conference on Evolvable Systems, pp. 181–186 (2014)

    Google Scholar 

  53. Gongora, M.A., Passow, B.N., Hopgood, A.A.: Robustness analysis of evolutionary controller tuning using real systems. In: 2009 IEEE Congress on Evolutionary Computation, pp. 606–613 (2009)

    Google Scholar 

  54. Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3(2), 151–183 (1994)

    Article  Google Scholar 

  55. Guo, J., Hu, P., Li, L., Wang, R.: Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms. IEEE Trans. Veh. Technol. 61(7), 2913–2924 (2012)

    Google Scholar 

  56. Gupta, A., Savarese, S., Ganguli, S., Fei-Fei, L.: Embodied intelligence via learning and evolution. Nat. Commun. 12(1), 5721 (2021)

    Google Scholar 

  57. Ha, D.: Reinforcement learning for improving agent design. Artif. Life. 25(4), 352–365 (2019)

    Google Scholar 

  58. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in modular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) Evolvable Systems: From Biology to Hardware, pp. 169–180. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  59. Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., Clarke, G.: Evolving spiking neural network controllers for autonomous robots. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5, pp. 4620–4626 (2004)

    Google Scholar 

  60. Hallawa, A., Born, T., Schmeink, A., Dartmann, G., Peine, A., Martin, L., Iacca, G., Eiben, A.E., Ascheid, G.: Evo-RL: evolutionary-driven reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21, pp. 153–154. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  61. Hallawa, A., Schug, S., Iacca, G., Ascheid, G.: Evolving instinctive behaviour in resource-constrained autonomous agents using grammatical evolution. In: Castillo, P.A., Laredo, J.L.J., de Vega, F.F. (eds.) Applications of Evolutionary Computation, pp. 369–383. Springer International Publishing, Cham (2020)

    Google Scholar 

  62. Hasselmann, K., Ligot, A., Ruddick, J., Birattari, M.: Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nat. Commun. 12(1), 4345 (2021)

    Google Scholar 

  63. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105(5), 355–370 (2011)

    Google Scholar 

  64. Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning by genetic programming. Eng. Appl. Artif. Intell. 76, 158–169 (2018)

    Article  Google Scholar 

  65. Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Comput. & Graph. 25(6), 1041–1048 (2001). Artificial Life

    Google Scholar 

  66. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402–410 (2005)

    Google Scholar 

  67. Hossain, D., Capi, G.: Multiobjective evolution of deep learning parameters for robot manipulator object recognition and grasping. Adv. Robot. 32(20), 1090–1101 (2018)

    Google Scholar 

  68. Hu, Y., Wu, X., Geng, P., Li, Z.: Evolution strategies learning with variable impedance control for grasping under uncertainty. IEEE Trans. Ind. Electron. 66(10), 7788–7799 (2018)

    Google Scholar 

  69. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online robot evolution. In: Sim, K., Kaufmann, P. (eds.) Applications of Evolutionary Computation, pp. 687–702. Springer International Publishing, Cham (2018)

    Google Scholar 

  70. Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of behavior trees in robotics and AI. Robot. Auton. Syst. 154, 104096 (2022)

    Google Scholar 

  71. Iovino, M., Styrud, J., Falco, P., Christian, S.: Learning behavior trees with genetic programming in unpredictable environments. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4591–4597 (2021)

    Google Scholar 

  72. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  73. Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., et al.: Population based training of neural networks (2017). arXiv:1711.09846

  74. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  75. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University of Sussex (1998)

    Google Scholar 

  76. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) Advances in Artificial Life, pp. 704–720. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  77. Jansen, T.: Strandbeests. Arch. Des. 78(4), 22–27 (2008)

    Google Scholar 

  78. Jelisavcic, M., Glette, K., Haasdijk, E., Eiben, A.E.: Lamarckian evolution of simulated modular robots. Front. Robot. AI. 6 (2019)

    Google Scholar 

  79. Yang, J., Zhang, Q., Zeng, J., Yin, Q.: Survey of evolutionary behavior tree algorithm. J. Syst. Simul. 33(10), 2315 (2021)

    Google Scholar 

  80. Joachimczak, M., Suzuki, R., Arita, T.: Artificial metamorphosis: evolutionary design of transforming, soft-bodied robots. Artif. Life. 22(3), 271–298 (2016)

    Google Scholar 

  81. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm robotics. In: Groß, R., Kolling, A., Berman, S., Frazzoli, E., Martinoli, A., Matsuno, F., Gauci, M. (eds.) Distributed Autonomous Robotic Systems: The 13th International Symposium, pp. 487–501. Springer International Publishing, Cham (2018)

    Google Scholar 

  82. Juang, C.-F., Chang, Y.-C.: Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments. IEEE Trans. Fuzzy Syst. 19(2), 379–392 (2011)

    Google Scholar 

  83. Juang, C.-F., Hsu, C.-H.: Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Trans. Ind. Electron. 56(10), 3931–3940 (2009)

    Google Scholar 

  84. Juang, C.-F., Jeng, T.-L., Chang, Y.-C.: An interpretable fuzzy system learned through online rule generation and multiobjective ACO with a mobile robot control application. IEEE Trans. Cybern. 46(12), 2706–2718 (2016)

    Google Scholar 

  85. Kaiser, T.K., Hamann, H.: Engineered self-organization for resilient robot self-assembly with minimal surprise. Robot. Auton. Syst. 122, 103293 (2019)

    Google Scholar 

  86. Kalra, P., Mahapatra, P.B., Aggarwal, D.K.: An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots. Mech. Mach. Theory. 41(10), 1213–1229 (2006)

    Article  MATH  Google Scholar 

  87. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: Distributed adaptive locomotion by a modular robotic system, M-TRAN II. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2370–2377. IEEE (2004)

    Google Scholar 

  88. Kano, M., Shigi, Y., Hasebe, S., Ooyama, S.: Detection of significant model-plant mismatch from routine operation data of model predictive control system. IFAC Proc. Vol. 43(5), 685–690 (2010). 9th IFAC Symposium on Dynamics and Control of Process Systems

    Google Scholar 

  89. Khadka, S., Tumer, K.: Evolution-guided policy gradient in reinforcement learning. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 1196–1208. Curran Associates Inc, Red Hook, NY, USA (2018)

    Google Scholar 

  90. Klaus, G., Glette, K., Tørresen, J.: A comparison of sampling strategies for parameter estimation of a robot simulator. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) Simulation, Modeling, and Programming for Autonomous Robots, pp. 173–184. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  91. Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2012)

    Google Scholar 

  92. Koza, J.R.: Genetic Programming: a Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems, vol. 34. Stanford University, Department of Computer Science Stanford, CA (1990)

    Google Scholar 

  93. Kriegman, S.: Blackiston, D., Levin, M., Bongard, J.: Kinematic self-replication in reconfigurable organisms. In: Proc. Natl. Acad. Sci. 118(49), e2112672118 (2021)

    Google Scholar 

  94. Kriegman, S., Cheney, N., Bongard, J.: How morphological development can guide evolution. Sci. Rep. 8(1), 13934 (2018)

    Google Scholar 

  95. Kriegman, S., Nasab, A.M., Shah, D., Steele, H., Branin, G., Levin, M., Bongard, J., Kramer-Bottiglio, R.: Scalable sim-to-real transfer of soft robot designs. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 359–366 (2020)

    Google Scholar 

  96. Kriegman, S., Walker, S., Shah, D., Levin, M., Kramer-Bottiglio, R., Bongard, J.: Automated shapeshifting for function recovery in damaged robots. Proc. Robot. Sci. Syst. (2019)

    Google Scholar 

  97. Le Goff, L.K., Buchanan, E., Hart, E., Eiben, A.E., Li, W., De Carlo, M., Winfield, A.F., Hale, M.F., Woolley, R., Angus, M., et al.: Morpho-evolution with learning using a controller archive as an inheritance mechanism. IEEE Trans. Cogn. Dev. Syst. (2022)

    Google Scholar 

  98. Levin, M., Pietak, A.M., Bischof, J.: Planarian regeneration as a model of anatomical homeostasis: recent progress in biophysical and computational approaches. Semin. Cell & Dev. Biol. 87, 125–144 (2019)

    Article  Google Scholar 

  99. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)

    Google Scholar 

  100. Lipson, H., Sunspiral, V., Bongard, J., Cheney, N.: On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In: Volume ALIFE 2016, the Fifteenth International Conference on the Synthesis and Simulation of Living Systems of Artificial Life Conference Proceedings, pp. 226–233 (2022)

    Google Scholar 

  101. Long, J.: Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology. Hachette, UK (2012)

    Google Scholar 

  102. Luo, J., Stuurman, A.C., Tomczak, J.M., Ellers, J., Eiben, A.E.: The effects of learning in morphologically evolving robot systems. Front. Robot. AI. 9 (2022)

    Google Scholar 

  103. Mabu, S., Hirasawa, K., Hu, J.: Genetic network programming with reinforcement learning and its performance evaluation. In: Deb, K. (ed.) Genetic and Evolutionary Computation–GECCO 2004, pp. 710–711. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  104. Mabu, S., Hirasawa, K., Hu, J.: A Graph-based evolutionary algorithm: genetic network programming (GNP) and its extension using reinforcement learning. Evol. Comput. 15(3), 369–398 (2007)

    Google Scholar 

  105. Mahdavi, S.H., Bentley, P.J.: An evolutionary approach to damage recovery of robot motion with muscles. In: European Conference on Artificial Life, pp. 248–255. Springer (2003)

    Google Scholar 

  106. Marsland, S.: Machine Learning: an Algorithmic Perspective. CRC press (2015)

    Google Scholar 

  107. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  108. Medvet, E., Bartoli, A., De Lorenzo, A., Fidel, G.: Evolution of distributed neural controllers for voxel-based soft robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pp. 112–120. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  109. Mégane, J., Lourenço, N., Machado, P.: Probabilistic grammatical evolution. In: Ting, H., Nuno, L., Medvet, E. (eds.) Genetic Programming, pp. 198–213. Springer International Publishing, Cham (2021)

    Google Scholar 

  110. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life. 2(4), 417–434 (1995)

    Google Scholar 

  111. Miras, K.: Constrained by design: influence of genetic encodings on evolved traits of robots. Front. Robot. AI. 8 (2021)

    Google Scholar 

  112. Miras, K., De Carlo, M., Akhatou, S., Eiben, A.E.: Evolving-controllers versus learning-controllers for morphologically evolvable robots. In: Castillo, P.A., Laredo, J.L.J., de Vega, F.F. (eds.) Applications of Evolutionary Computation, pp. 86–99. Springer International Publishing, Cham (2020)

    Google Scholar 

  113. Miras, K., Eiben, A.E.: Effects of environmental conditions on evolved robot morphologies and behavior. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19, pp. 125–132. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  114. Miras, K., Ferrante, E., Eiben, A.E.: Environmental influences on evolvable robots. PLOS ONE. 15(5), 1–23 (2020)

    Google Scholar 

  115. Miras, K., Haasdijk, E., Glette, K., Eiben, A.E.: Search space analysis of evolvable robot morphologies. In: Sim, K., Kaufmann, P. (eds.) Applications of Evolutionary Computation, pp. 703–718. Springer International Publishing, Cham (2018)

    Google Scholar 

  116. Möller, F.J.D., Bernardino, H.S., Gonçalves, L.B., Soares, S.S.R.F.: A reinforcement learning based adaptive mutation for cartesian genetic programming applied to the design of combinational logic circuits. In: Cerri, R., Prati, R.C. (eds.) Intelligent Systems, pp. 18–32. Springer International Publishing, Cham (2020)

    Google Scholar 

  117. Montanier, J.-M., Bredeche, N.: Embedded evolutionary robotics: the (1+1)-restart-online adaptation algorithm. In: Doncieux, S., Bredèche, N., Mouret, J.-B. (eds.) New Horizons in Evolutionary Robotics, pp. 155–169. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  118. Mouret, J.-B., Clune, J.: Illuminating search spaces by mapping elites (2015). arXiv:1504.04909

  119. Nadizar, G., Medvet, E., Ramstad, H.H., Nichele, S., Pellegrino, F.A., Zullich, M.: Merging pruning and neuroevolution: towards robust and efficient controllers for modular soft robots. Knowl. Eng. Rev. 37, e3 (2022)

    Google Scholar 

  120. Nadizar, G., Medvet, E., Miras, K.: On the schedule for morphological development of evolved modular soft robots. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming, pp. 146–161. Springer International Publishing, Cham (2022)

    Google Scholar 

  121. Nadizar, G., Medvet, E., Nichele, S., Pontes-Filho, S.: Collective control of modular soft robots via embodied Spiking Neural Cellular Automata (2022). arXiv:2204.02099

  122. Nadizar, G., Medvet, E., Pellegrino, F.A., Zullich, M., Nichele, S.: On the Effects of Pruning on Evolved Neural Controllers for Soft Robots. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21, pp. 1744–1752. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  123. Najarro, E., Risi, S.: Meta-learning through hebbian plasticity in random networks. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20. Curran Associates Inc., Red Hook, NY, USA (2020)

    Google Scholar 

  124. Naya-Varela, M., Faina, A., Mallo, A., Duro, R.J.: A study of growth based morphological development in neural network controlled walkers. Neurocomputing. 500, 279–294 (2022)

    Article  Google Scholar 

  125. Neupane, A., Goodrich, M.: Learning swarm behaviors using grammatical evolution and behavior trees. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp. 513–520. AAAI Press (2019)

    Google Scholar 

  126. Neupane, A., Goodrich, M.A.: Designing emergent swarm behaviors using behavior trees and grammatical evolution. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pp. 2138–2140. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2019)

    Google Scholar 

  127. Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., Sugeno, M.: Fuzzy control systems: past, present and future. IEEE Comput. Intell. Mag. 14(1), 56–68 (2019)

    Google Scholar 

  128. Niekum, S., Barto, A.G., Spector, L.: Genetic programming for reward function search. IEEE Trans. Auton. Ment. Dev. 2(2), 83–90 (2010)

    Article  Google Scholar 

  129. Nolfi, S., Bongard, J., Husbands, P., Floreano, D.: Evolutionary Robotics, pp. 2035–2068. Springer International Publishing, Cham (2016)

    Google Scholar 

  130. Nolfi, S., Floreano, D.: Learning and evolution. Auton. Robot. 7(1), 89–113 (1999)

    Google Scholar 

  131. Nolfi, S., Parisi, D.: Learning to adapt to changing environments in evolving neural networks. Adapt. Behav. 5(1), 75–98 (1996)

    Google Scholar 

  132. Norstein, E.S., Ellefsen, K.O., Glette, K.: Open-Ended Search for Environments and Adapted Agents Using MAP-Elites. In: Laredo, J.L.J., Hidalgo, J.I., Babaagba, K.O. (eds.) Applications of Evolutionary Computation, pp. 651–666. Springer International Publishing, Cham (2022)

    Google Scholar 

  133. Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18, pp. 125–132. Association for Computing Machinery, New York, NY, USA (2018)

    Google Scholar 

  134. O’Dowd, P.J., Winfield, A.F.T., Studley, M.: The distributed co-evolution of an embodied simulator and controller for swarm robot behaviours. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4995–5000 (2011)

    Google Scholar 

  135. Olivier, L.E., Craig, I.K.: Model-plant mismatch detection and model update for a run-of-mine ore milling circuit under model predictive control. J. Process. Control. 23(2), 100–107 (2013). IFAC World Congress Special Issue

    Google Scholar 

  136. Pathak, D., Lu, C., Darrell, T., Phillip, I., Efros, A.A.: Learning to Control Self-Assembling Morphologies: a Study of Generalization via Modularity. Curran Associates Inc., Red Hook, NY, USA (2019)

    Google Scholar 

  137. Paul, S.K., Bhaumik, P.: A reinforcement learning agent based on genetic programming and universal search. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 122–128 (2020)

    Google Scholar 

  138. Pedersen, J.W., Risi, S.: Evolving and merging hebbian learning rules: increasing generalization by decreasing the number of rules. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21, pp. 892–900. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  139. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3803–3810 (2018)

    Google Scholar 

  140. Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence. MIT press (2006)

    Google Scholar 

  141. Pigozzi, F.: Shape change and control of pressure-based soft agents. In: Holler, S., Loeffler, R., Bartlett, S. (eds.) ALIFE 2022: the 2022 Conference on Artificial Life, vol. 37, pp. 1–10. MIT Press (2022)

    Google Scholar 

  142. Pigozzi, F., Medvet, E., Bartoli, A., Rochelli, M.: Factors impacting diversity and effectiveness of evolved modular robots. ACM Trans. Evol. Learn. 3(1), 1–33 (2023)

    Google Scholar 

  143. Pigozzi, F., Tang, Y., Medvet, E., Ha, D.: Evolving modular soft robots without explicit inter-module communication using local self-attention. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22, pp. 148–157. Association for Computing Machinery, New York, NY, USA (2022)

    Google Scholar 

  144. Pontes-Filho, S., Walker, K., Najarro, E., Nichele, S., Risi, S.: A unified substrate for body-brain co-evolution (2022). arXiv:2203.12066

  145. Pourchot, A., Perrin, N., Sigaud, O.: Importance mixing: improving sample reuse in evolutionary policy search methods (2018). arXiv:1808.05832

  146. Precup, R.-E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)

    Google Scholar 

  147. Qiu, H., Garratt, M., Howard, D., Anavatti, S.: Towards crossing the reality gap with evolved plastic neurocontrollers. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pp. 130–138. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  148. Regan, W., Van Breugel, F., Lipson, H.: Towards Evolvable Hovering Flight on a Physical Ornithopter. Alife X, Bloomington, USA (2006)

    Google Scholar 

  149. Reuter, J., Steup, C., Mostaghim, S.: Genetic programming-based inverse kinematics for robotic manipulators. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming, pp. 130–145. Springer International Publishing, Cham (2022)

    Google Scholar 

  150. Reyes, P., Escobar, M.-J.: Neuroevolutive algorithms for learning gaits in legged robots. IEEE Access. 7, 142406–142420 (2019)

    Google Scholar 

  151. Rosenzweig, M.R., Breedlove, S.M., Leiman, A.L.: Biological Psychology: an Introduction to Behavioral, Cognitive, and Clinical Neuroscience. Sinauer Associates (2002)

    Google Scholar 

  152. Rothlauf, F.: On the locality of representations. In: Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation: PartII, GECCO’03, pp. 1608–1609. Springer-Verlag, Berlin, Heidelberg (2003)

    Google Scholar 

  153. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, pp. 9–32. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  154. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic computing. Nat. 575(7784), 607–617 (2019)

    Google Scholar 

  155. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning (2017). arXiv:1703.03864

  156. Salvato, E., Fenu, G., Medvet, E., Pellegrino, F.A.: Characterization of modeling errors affecting performances of a robotics deep reinforcement learning controller in a sim-to-real transfer. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1154–1159 (2021)

    Google Scholar 

  157. Salvato, E., Fenu, G., Medvet, E., Pellegrino, F.A.: Crossing the reality gap: a survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access. 9, 153171–153187 (2021)

    Google Scholar 

  158. Samuelsen, E., Glette, K.: Some distance measures for morphological diversification in generative evolutionary robotics. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14, pp. 721–728. Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  159. Sasaki, H., Kubota, N.: Virus-evolutionary genetic algorithm for fuzzy spiking neural network of a mobile robot in a dynamic environment. In: 2006 SICE-ICASE International Joint Conference, pp. 4214–4219 (2006)

    Google Scholar 

  160. Sasaki, H., Kubota, N.: Distributed behavior learning of multiple mobile robots based on spiking neural network and steady-state genetic algorithm. In: 2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp. 73–78 (2009)

    Google Scholar 

  161. Scheper, K.Y.W., Tijmons, S., de Visser, C.C., de Croon, G.C.H.E.: Behavior trees for evolutionary robotics \(\dagger \). Artif. Life. 22(1), 23–48 (2016)

    Google Scholar 

  162. Selvanathan, S., Tangirala, A.K.: Diagnosis of poor control loop performance due to model-plant mismatch. Ind. & Eng. Chem. Res. 49(9), 4210–4229 (2010)

    Google Scholar 

  163. Seriani, S., Marcini, L., Caruso, M., Gallina, P., Medvet, E.: Crowded environment navigation with NEAT: impact of perception resolution on controller optimization. J. Intell. & Robot. Syst. 101(2), 36 (2021)

    Google Scholar 

  164. Sigaud, O., Stulp, F.: Policy search in continuous action domains: an overview. Neural Netw. 113, 28–40 (2019)

    Google Scholar 

  165. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life. 1(4), 353–372 (1994)

    Google Scholar 

  166. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pp. 15–22. Association for Computing Machinery, New York, NY, USA (1994)

    Google Scholar 

  167. Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A., Stauffer, A.: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. Evol. Comput. 1(1), 83–97 (1997)

    Article  Google Scholar 

  168. Song, X., Yang, Y., Choromanski, K., Caluwaerts, K., Gao, W., Finn, C., Tan, J.: Rapidly adaptable legged robots via evolutionary meta-learning. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3769–3776 (2020)

    Google Scholar 

  169. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

    Google Scholar 

  170. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life. 15(2), 185–212 (2009)

    Google Scholar 

  171. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving neural network topologies. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO’02, pp. 569–577. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)

    Google Scholar 

  172. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Google Scholar 

  173. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)

    Google Scholar 

  174. Talamini, J., Medvet, E., Bartoli, A., De Lorenzo, A.: Evolutionary synthesis of sensing controllers for voxel-based soft robots. In: Volume ALIFE 2019: the 2019 Conference on Artificial Life of Artificial Life Conference Proceedings, pp. 574–581 (2019)

    Google Scholar 

  175. Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, pp. 414–424. Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  176. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)

    Google Scholar 

  177. Téllez, R.A., Angulo, C., Pardo, D.E.: Evolving the walking behaviour of a 12 DOF quadruped using a distributed neural architecture. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) Biologically Inspired Approaches to Advanced Information Technology, pp. 5–19. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  178. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30 (2017)

    Google Scholar 

  179. Tuci, E., Massera, G., Nolfi, S.: Active categorical perception in an evolved anthropomorphic robotic arm. In: 2009 IEEE Congress on Evolutionary Computation, pp. 31–38 (2009)

    Google Scholar 

  180. Urzelai, J., Floreano, D.: Evolutionary robotics: coping with environmental change. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, GECCO’00, pp. 941–948. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

    Google Scholar 

  181. Valsalam, V.K., Miikkulainen, R.: Modular neuroevolution for multilegged locomotion. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 265–272. Association for Computing Machinery, New York, NY, USA (2008)

    Google Scholar 

  182. van Diggelen, F., Babuska, R., Eiben, A.E.: The effects of adaptive control on learning directed locomotion. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2117–2124 (2020)

    Google Scholar 

  183. van Diggelen, F., Ferrante, E., Harrak, N., Luo, J., Zeeuwe, D., Eiben, A.E.: The influence of robot traits and evolutionary dynamics on the reality gap. IEEE Trans. Cogn. Dev. Syst. (2021)

    Google Scholar 

  184. Varela, F.J., Bourgine, P.: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life. MIT press (1992)

    Google Scholar 

  185. Veenstra, F., Faina, A., Risi, S., Stoy, K.: Evolution and morphogenesis of simulated modular robots: a comparison between a direct and generative encoding. In: Squillero, G., Sim, K. (eds.) Applications of Evolutionary Computation, pp. 870–885. Springer International Publishing, Cham (2017)

    Google Scholar 

  186. Wang, M., Luo, J., Fang, J., Yuan, J.: Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Adv. Space Res. 61(6), 1525–1536 (2018)

    Google Scholar 

  187. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired open-ended trailblazer (poet): endlessly generating increasingly complex and diverse learning environments and their solutions (2019). arXiv:1901.01753

  188. Wen, R., Guo, Z., Zhao, T., Ma, X., Wang, Q., Wu, Z.: Neuroevolution of augmenting topologies based musculor-skeletal arm neurocontroller. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2017)

    Google Scholar 

  189. Willyard, C.: New human gene tally reignites debate. Nat. 558(7710), 354–356 (2018)

    Article  Google Scholar 

  190. Xu, S., Moriguch, H., Honiden, S.: Sample efficiency analysis of neuroevolution algorithms on a quadruped robot. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2170–2177 (2013)

    Google Scholar 

  191. Zador, A.M.: A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10(1), 3770 (2019)

    Google Scholar 

  192. Zagal, J.C., Ruiz del Solar, J., Vallejos, P.: Back to reality: crossing the reality gap in evolutionary robotics. IFAC Proc. Vol. 37(8), 834–839 (2004). IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004

    Google Scholar 

  193. Zhang, H., Zhou, A., Lin, X.: Interpretable policy derivation for reinforcement learning based on evolutionary feature synthesis. Complex & Intell. Syst. 6(3), 741–753 (2020)

    Google Scholar 

  194. Zhang, T., Zhang, W., Gupta, M.M.: An underactuated self-reconfigurable robot and the reconfiguration evolution. Mech. Mach. Theory. 124, 248–258 (2018)

    Article  Google Scholar 

  195. Zhao, A., Xu, J., Konaković-Luković, M., Hughes, J., Spielberg, A., Rus, D., Matusik, W.: RoboGrammar: graph grammar for terrain-optimized robot design. ACM Trans. Graph. 39(6) (2020)

    Google Scholar 

  196. Zou, X., Scott, E., Johnson, A., Chen, K., Nitz, D., De Jong, K., Krichmar, J.: Neuroevolution of a recurrent neural network for spatial and working memory in a simulated robotic environment. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21, pp. 289–290. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Medvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Medvet, E., Nadizar, G., Pigozzi, F., Salvato, E. (2024). Evolutionary Machine Learning in Robotics. In: Banzhaf, W., Machado, P., Zhang, M. (eds) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-3814-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3814-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3813-1

  • Online ISBN: 978-981-99-3814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics