Skip to main content

Fundamentals of Evolutionary Machine Learning

  • Chapter
  • First Online:
Handbook of Evolutionary Machine Learning

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 1303 Accesses

Abstract

In this opening chapter, we overview the quickly developing field of evolutionary machine learning. We first motivate the field and define how we understand evolutionary machine learning. Then we take a look at its roots, finding that it has quite a long history, going back to the 1950s. We introduce a taxonomy of the field, discuss the major branches of evolutionary machine learning, and conclude by outlining open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackley, D., Littman, M.: Interactions between learning and evolution. In: Langton, C., Taylor, C., Farmer, J., Rasmussen, S (eds.) Artificial Life II, pp. 487–509. Addison-Wesley (1991)

    Google Scholar 

  2. Al-Sahaf, H., Bi, Y., Chen, Q., Lensen, A., Mei, Y., Sun, Y., Tran, B., Xue, B., Zhang, M.: A survey on evolutionary machine learning. J. Royal Soc. New Zealand 49(2), 205–228 (2019)

    Article  Google Scholar 

  3. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., Zimmermann, T.: Software engineering for machine learning: A case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300. IEEE (2019)

    Google Scholar 

  4. Ashby, W.R.: An Introduction to Cybernetics. Chapman and Hall (1956)

    Google Scholar 

  5. Bailey, B.: The Impact Of Moore’s Law Ending (2018). https://cacm.acm.org/news/232532-the-impact-of-moores-law-ending/fulltext (Last accessed Oct 12 2022)

  6. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6, 325–354 (1994)

    Article  Google Scholar 

  7. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming–An Introduction. Morgan Kaufmann (1998)

    Google Scholar 

  8. Barbiero, P., Squillero, G., Tonda, A.: Modeling generalization in machine learning: A methodological and computational study. ArXiv preprint arXiv:2006.15680 (2020)

  9. Bedau, M.A.: Weak emergence. Philos. Perspect. 11, 375–399 (1997)

    Google Scholar 

  10. Belle, V., Papantonis, I.: Principles and practice of explainable machine learning. Front. Big Data 39 (2021)

    Google Scholar 

  11. Beniaguev, D., Segev, I., London, M.: Single cortical neurons as deep artificial neural networks. Neuron 109(17), 2727–2739 (2021)

    Article  Google Scholar 

  12. Benthall, S.: Don’t fear the reaper: Refuting Bostrom’s superintelligence argument. ArXiv preprint arXiv:1702.08495 (2017)

  13. Blasch, E., Pham, T., Chong, C.-Y., Koch, W., Leung, H., Braines, D., Abdelzaher, T.: Machine learning/artificial intelligence for sensor data fusion-opportunities and challenges. IEEE Aerosp. Electron. Syst. Mag. 36(7), 80–93 (2021)

    Article  Google Scholar 

  14. Bostrom, N.: Superintelligence. Oxford University Press (2016)

    Google Scholar 

  15. Callebaut, W., Rasskin-Gutman, D., Simon, H.A.: Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press (2005)

    Google Scholar 

  16. Chalmers, D.J.: The evolution of learning: An experiment in genetic connectionism. In: Connectionist Models, pp. 81–90. Elsevier (1991)

    Google Scholar 

  17. Coello, C.C.: Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Article  Google Scholar 

  18. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Proceedings of the First International Conference on Genetic Algorithms (ICGA-1985), pp. 183–187 (1985)

    Google Scholar 

  19. Dai, T., Sycara, K., Zheng, R.: Agent reasoning in AI-powered negotiation. In: Handbook of Group Decision and Negotiation, pp. 1187–1211 (2021)

    Google Scholar 

  20. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural network sensor and output geometry. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 974–981 (2007)

    Google Scholar 

  21. de Ágreda, Á.G.: Ethics of autonomous weapons systems and its applicability to any ai systems. Telecommun. Policy 44(6), 101953 (2020)

    Article  Google Scholar 

  22. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14, 241–258 (2020)

    Article  Google Scholar 

  23. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019)

    Article  Google Scholar 

  24. Eden, A.H., Moor, J.H., Søraker, J.H., Steinhart, E.: Singularity Hypotheses. The Frontiers Collection. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  25. Emes, R.D., Grant, S.G.: Evolution of synapse complexity and diversity. Ann. Rev. Neurosci. 35, 111–131 (2012)

    Article  Google Scholar 

  26. Engelbart, D.: Augmenting Human Intellect: A Conceptual Framework, Summary Report. Technical Report AFOSR-3233, Stanford Research Institute, Menlo Park, CA (1962)

    Google Scholar 

  27. Englander, A.C.: Machine learning of visual recognition using genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 197–201. Erlbaum Associates Inc, USA (1985)

    Google Scholar 

  28. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel, A., Wierstra, D.: Pathnet: Evolution channels gradient descent in super neural networks. ArXiv preprint arXiv:1701.08734 (2017)

  29. Fernando, C., Szathmáry, E., Husbands, P.: Selectionist and evolutionary approaches to brain function: a critical appraisal. Front. Comput. Neurosci. 6, 24 (2012)

    Article  Google Scholar 

  30. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evolution. Wiley, Chichester, WS, UK (1966)

    MATH  Google Scholar 

  31. Fogel, L.J.: Autonomous automata. Ind. Res. 4, 14–19 (1962)

    Google Scholar 

  32. Forsyth, R.: BEAGLE-A Darwinian approach to pattern recognition. Kybernetes 10, 159–166 (1981)

    Article  Google Scholar 

  33. Fox, D.: The limits of intelligence. Sci. Am. 305(1), 36–43 (2011)

    Article  Google Scholar 

  34. Fraser, A.S.: Simulation of genetic systems by automatic digital computers i. introduction. Australian J. Biol. Sci. 10(4), 484–491 (1957)

    Google Scholar 

  35. Friedberg, R.M.: A learning machine: Part i. IBM J. Res. Develop. 2(1), 2–13 (1958)

    Article  MathSciNet  Google Scholar 

  36. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  37. Gagné, C., Schoenauer, M., Sebag, M., Tomassini, M.: Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN IX, pp. 1008–1017. Springer, Berlin (2006)

    Chapter  Google Scholar 

  38. Goldberg, D.E.: Computer-aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning. University of Michigan (1983)

    Google Scholar 

  39. Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., Li, J.-J.: Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)

    Article  Google Scholar 

  40. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: 27th Advances in Neural Information Processing Systems Conference (2014)

    Google Scholar 

  41. Gruau, F.: Genetic micro programming of neural networks. In: Kinnear, K.E., Jr. (ed.) Advances in Genetic Programming, pp. 495–518. MIT Press (1994)

    Google Scholar 

  42. Harris, W.: Zero to Brain. Princeton University Press (2022)

    Google Scholar 

  43. Hassan, M.B., Saeed, R.A., Khalifa, O., Ali, E.S., Mokhtar, R.A., Hashim, A.A.: Green machine learning for green cloud energy efficiency. In: 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), pp. 288–294. IEEE (2022)

    Google Scholar 

  44. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., Pineau, J.: Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 21(1), 10039–10081 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Holland, J.H.: Outline for a logical theory of adaptive systems. J. ACM 9(3), 297–314 (1962)

    Article  MATH  Google Scholar 

  46. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1975)

    Google Scholar 

  47. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. SIGART Bull. 63, 49 (1977)

    Article  Google Scholar 

  48. Howley, T., Madden, M.G.: The genetic kernel support vector machine: Description and evaluation. Artif. Intell. Rev. 24(3–4), 379–395 (2005)

    Article  Google Scholar 

  49. Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: Variants, applications, and training. ACM Comput. Surv. (CSUR) 54(8), 1–49 (2021)

    Article  Google Scholar 

  50. Kelly, S., Smith, R.J., Heywood, M.I., Banzhaf, W.: Emergent tangled program graphs in partially observable recursive forecasting and vizdoom navigation tasks. ACM Trans. Evol. Learn. Optim. 1(3), 1–41 (2021)

    Article  Google Scholar 

  51. Kim, H.B., Jung, S.H., Kim, T.G., Park, K.H.: Fast learning method for back-propagation neural network by evolutionary adaptation of learning rates. Neurocomputing 11(1), 101–106 (1996)

    Article  MATH  Google Scholar 

  52. Koeppe, P., Hamann, C.: A program for non-linear regression analysis to be used on desk-top computers. Comput. Program. Biomed. 12(2–3), 121–128 (1980)

    Article  Google Scholar 

  53. Korot, E., Guan, Z., Ferraz, D., Wagner, S.K., Zhang, G., Liu, X., Faes, L., Pontikos, N., Finlayson, S.G., Khalid, H., et al.: Code-free deep learning for multi-modality medical image classification. Nat. Mach. Intell. 3(4), 288–298 (2021)

    Article  Google Scholar 

  54. Koza, J.R.: Hierarchical genetic algorithms operating on populations of computer programs. In: International Joint Conference on Artifcial Intelligence (IJCAI-89), vol. 89, pp. 768–774 (1989)

    Google Scholar 

  55. Koza, J.R.: Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical report, Department of Computer Science, Stanford University, Stanford, CA, USA (1990)

    Google Scholar 

  56. Koza, J.R.: Genetic Programming–On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  57. Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emissions of machine learning. ArXiv preprint arXiv:1910.09700 (2019)

  58. Lehman, J., Clune, J., Misevic, D., et al.: The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26(2), 274–306 (2020)

    Article  Google Scholar 

  59. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Networks Learn. Syst. 34, 550–570 (2021)

    Article  MathSciNet  Google Scholar 

  60. Lo Piano, S.: Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanit. Soc. Sci. Commun. 7(1), 1–7 (2020)

    Article  Google Scholar 

  61. Lu, Z., Cheng, R., Jin, Y., Tan, K.C., Deb, K.: Neural architecture search as multiobjective optimization benchmarks: Problem formulation and performance assessment. ArXiv preprint arXiv:2208.04321 (2022)

  62. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.: NSGA-Net: Neural Architecture Search using Multi-objective Genetic Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427 (2019)

    Google Scholar 

  63. Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., Zhu, Z.: A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 23(3), 421–441 (2018)

    Article  Google Scholar 

  64. Maas, M.M.: How viable is international arms control for military artificial intelligence? three lessons from nuclear weapons. Contemp. Secur. Policy 40(3), 285–311 (2019)

    Article  MathSciNet  Google Scholar 

  65. Machado, P., Baeta, F., Martins, T., Correia, J.: GP-based generative adversarial models. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds.) Genetic Programming Theory and Practice XIX, Genetic and Evolutionary Computation, pp. 117–140. Springer, Ann Arbor, USA (2022)

    Google Scholar 

  66. Machado, P., Romero, J., Manaris, B.Z.: Experiments in computational aesthetics. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, Natural Computing Series, pp. 381–415. Springer (2008)

    Google Scholar 

  67. Mei, Y., Chen, Q., Lensen, A., Xue, B., Zhang, M.: Explainable artificial intelligence by genetic programming: A survey. IEEE Trans. Evol. Comput. 27(3), 621–641 (2023)

    Article  Google Scholar 

  68. Miller, J.F.: Designing Multiple ANNs with Evolutionary Development: Activity Dependence. In: Banzhaf, W., Trujillo, L., Winkler, S., Worzel, B. (eds.) Genetic Programming Theory and Practice XVIII, pp. 165–180. Springer Nature Singapore, Singapore (2022)

    Chapter  Google Scholar 

  69. Montana, D.J., Davis, L., et al.: Training feedforward neural networks using genetic algorithms. In: International Joint Conference on Artifcial Intelligence (IJCAI-89), vol. 89, pp. 762–767 (1989)

    Google Scholar 

  70. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. CoRR, arXiv:1412.1897 (2014)

  71. Nolfi, S., Floreano, D.: Learning and evolution. Autonom. Robot. 7, 89–113 (1999)

    Article  Google Scholar 

  72. Olson, R.S., Moore, J.H.: Tpot: A tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016)

    Google Scholar 

  73. Paleyes, A., Urma, R.-G., Lawrence, N.D.: Challenges in deploying machine learning: a survey of case studies. ACM Comput. Surv. 55(6), 1–29 (2022)

    Article  Google Scholar 

  74. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

    Article  Google Scholar 

  75. Peng, H.: A comprehensive overview and survey of recent advances in meta-learning. ArXiv preprint arXiv:2004.11149 (2020)

  76. Pessach, D., Shmueli, E.: A review on fairness in machine learning. ACM Comput. Surv. (CSUR) 55(3), 1–44 (2022)

    Article  Google Scholar 

  77. Phanendra Babu, G., Narasimha Murty, M.: A near-optimal initial seed value selection in k-means means algorithm using a genetic algorithm. Patt. Recogn. Lett. 14(10), 763–769 (1993)

    Article  MATH  Google Scholar 

  78. Pujari, K.N., Miriyala, S.S., Mittal, P., Mitra, K.: Better wind forecasting using evolutionary neural architecture search driven green deep learning. Expert Syst. Appl. 214, 119063 (2023)

    Article  Google Scholar 

  79. Qiao, Y., Zhao, L., Luo, C., Luo, Y., Wu, Y., Li, S., Bu, D., Zhao, Y.: Multi-modality artificial intelligence in digital pathology. Brief. Bioinform. 23(6), bbac367 (2022)

    Google Scholar 

  80. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from natural language supervision. CoRR arXiv:2103.00020 (2021)

  81. Raghavan, V.V., Birchard, K.: A clustering strategy based on a formalism of the reproductive process in natural systems. In: Proceedings of the 2nd Annual International ACM SIGIR Conference on Information Storage and Retrieval: Information Implications into the Eighties, SIGIR ’79, pp. 10–22. Association for Computing Machinery , New York, NY, USA (1979)

    Google Scholar 

  82. Real, E., Liang, C., So, D., Le, Q.: Automl-zero: Evolving machine learning algorithms from scratch. In: International Conference on Machine Learning, pp. 8007–8019. PMLR (2020)

    Google Scholar 

  83. Rechenberg, I.: Cybernetic solution path of an experimental problem. Technical Report Library Translation No. 1122, Royal Aircraft Establishment, Farnborough (1965)

    Google Scholar 

  84. Sagi, O., Rokach, L.: Ensemble learning: A survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Google Scholar 

  85. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning (2017)

    Google Scholar 

  86. Salvato, E., Fenu, G., Medvet, E., Pellegrino, F.A.: Crossing the reality gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access 9, 153171–153187 (2021)

    Article  Google Scholar 

  87. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Develop. 3(3), 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  88. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Technical report, Vanderbilt Univ., Nashville, TN (USA) (1985)

    Google Scholar 

  89. Shinozaki, T., Watanabe, S.: Structure discovery of deep neural network based on evolutionary algorithms. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4979–4983. IEEE (2015)

    Google Scholar 

  90. Simon, H.A.: The Sciences of the Artificial, Reissue of the third edition with a New Introduction by John Laird. MIT Press (2019)

    Google Scholar 

  91. Sims, K.: Evolving 3d morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  92. Sims, K.: Evolving virtual creatures. In: Schweitzer, D., Glassner, A.S., Keeler, M. (eds.) Proceedings of the 21th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, pp. 15–22. ACM (1994)

    Google Scholar 

  93. So, D., Le, Q., Liang, C.: The evolved transformer. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 5877–5886 (2019)

    Google Scholar 

  94. Spector, L., Alpern, A.: Induction and recapitulation of deep musical structure. In: Proceedings of the IFCAI–95 Workshop on Artificial Intelligence and Music, pp. 41–48 (1995)

    Google Scholar 

  95. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  96. Stepney, S.: Life as a cyber-bio-physical system. In: Trujillo, L., Winkler, S., Silva, S., Banzhaf, W. (eds.) Genetic Programming–Theory and Practice. GPTP XIX, pp. 167–200. Springer Nature, Singapore (2023)

    Google Scholar 

  97. Sze, V.: Designing hardware for machine learning: The important role played by circuit designers. IEEE Solid-State Circ. Mag. 9(4), 46–54 (2017)

    Article  Google Scholar 

  98. Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.H.: Evolutionary machine learning: A survey. ACM Comput. Surv. 54(8) (2021)

    Google Scholar 

  99. Tkachenko, A., Brovinskaya, N., Kondratenko, Y.: Evolutionary adaptation of control processes in robots operating in nonstationary environments. Mech. Mach. Theory 18(4), 275–278 (1983)

    Article  Google Scholar 

  100. Tornede, T., Tornede, A., Hanselle, J., Wever, M., Mohr, F., Hüllermeier, E.: Towards green automated machine learning: Status quo and future directions. ArXiv preprint arXiv:2111.05850 (2021)

  101. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  102. Turing, A.M.: Intelligent machinery, a heretical theory. In: The Essential Turing. Oxford University Press (2004)

    Google Scholar 

  103. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)

    MATH  Google Scholar 

  104. Wang, J.X.: Meta-learning in natural and artificial intelligence. Current Opin. Behav. Sci. 38, 90–95 (2021)

    Article  Google Scholar 

  105. Wang, Z., Gao, S., Wang, J., Yang, H., Todo, Y.: A dendritic neuron model with adaptive synapses trained by differential evolution algorithm. In: Computational Intelligence and Neuroscience (2020)

    Google Scholar 

  106. Weiss, E.: Arthur Lee Samuel (1901–90). IEEE Ann. History Comput. 14(3), 55–69 (1992)

    Article  Google Scholar 

  107. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)

    Article  Google Scholar 

  108. Yao, X.: Evolutionary artificial neural networks. Int. J. Neural Syst. 4(3), 203–222 (1993)

    Article  Google Scholar 

  109. Yao, X.: Evolving artificial neural networks. Proceed. IEEE 87(9), 1423–1447 (1999)

    Google Scholar 

  110. Yerushalmi, U., Teicher, M.: Evolving synaptic plasticity with an evolutionary cellular development model. PLoS ONE 3(11), e3697 (2008)

    Article  Google Scholar 

  111. Zhang, Q., Liu, Y., Blum, R.S., Han, J., Tao, D.: Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review. Inf. Fusion 40, 57–75 (2018)

    Article  Google Scholar 

  112. Zhou, Y., Kantarcioglu, M., Xi, B.: A survey of game theoretic approach for adversarial machine learning. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 9(3), e1259 (2019)

    Google Scholar 

  113. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive survey on transfer learning. Proceed. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the FCT–Foundation for Science and Technology, I.P./MCTES through national funds (PIDDAC), within the scope of CISUC R &D Unit–UIDB/00326/2020 or project code UIDP/00326/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penousal Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banzhaf, W., Machado, P. (2024). Fundamentals of Evolutionary Machine Learning. In: Banzhaf, W., Machado, P., Zhang, M. (eds) Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-3814-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3814-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3813-1

  • Online ISBN: 978-981-99-3814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics