Skip to main content

Models and Mathematical Issues in Color Film Restorations

  • Conference paper
  • First Online:
Mathematical Modeling in Cultural Heritage (MACH 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 55))

  • 125 Accesses

Abstract

The state of the art of current methods of film restoration (photographic and cinematographic) suggest the use of digital technologies to retrieve and restore faded and damaged original frames. In this context, the use of suitable mathematical and computational models can support the restorer in reconstructing the original state of the film and provide faster and cheaper restoration techniques. In this work, we discuss some of the main problems and open issues in film restoration, to promote new approaches and research directions that could benefit from mathematical modeling. In this direction, we present a color and contrast restoration approach based on the application of Spatial Color Algorithms (SCAs) to estimate the original color appearance in films, based on the Retinex model of human color visual sensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU: European Broadcasting Union, Preservation and reuse of film material for television. Technical Report (2001)

    Google Scholar 

  2. Enticknap, L.: The Culture and Science of Audiovisual Heritage. Palgrave MacMillan, London (2013)

    Google Scholar 

  3. Fournier, V.: Digitisation opens up new prospects for audiovisual archives. Newspaper Tech. IV, 58–60 (2002)

    Google Scholar 

  4. Hauttekeete, L., Evens, T., De Moor, K., Schuurman, D.,Mannens, E., Van de Walle, R.: Archives in motion: Concrete steps towards the digital disclosure of audiovisual content. J. Cult. Herit. 12, 459–465 (2011)

    Article  Google Scholar 

  5. Plutino, A., Lanaro, M.P., Liberini, S., Rizzi, A.: Work memories in Super 8: searching a frame quality metric for movie restoration assessment. J. Cult. Herit. 41, 238–248 (2020)

    Article  Google Scholar 

  6. Plutino, A., Rizzi, A.: Research directions in color movie restoration. Color. Technol. 137, 78–82 (2021)

    Article  Google Scholar 

  7. Van Dormolen, H.: Metamorfoze Preservation Imaging Guidelines. National programme for the preservation of paper heritage (2012)

    Google Scholar 

  8. FADGI: Technical Guidelines for Digitizing Cultural Heritage Materials. Federal Agencies Digital Guidelines Initiative, Still Image Working Group (2015)

    Google Scholar 

  9. Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994)

    Article  Google Scholar 

  10. Tsin, Y., Ramesh, V., Kanade, T.: Statistical calibration of CCD imaging process. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 480–487. IEEE, Vancouver (2001)

    Google Scholar 

  11. McCann, J.J., Rizzi, A.: The Art and Science of HDR Imaging. John Wiley & Sons, New York (2011)

    Book  Google Scholar 

  12. McCann, J.J., Vonikakis, V., Rizzi, A.: HDR Scene Capture and Appearance. SPIE Spotlight Series, San Francisco (2017)

    Google Scholar 

  13. Signoroni, A., Conte, M., Plutino, A., Rizzi, A.: Spatial–spectral evidence of glare influence on hyperspectral acquisitions. Sensors 20, 4374 (2020)

    Article  Google Scholar 

  14. McCann, J.J., Rizzi, A.: Camera and visual veiling glare in HDR images. J. Soc. Inf. Display 15, 721–730 (2007)

    Article  Google Scholar 

  15. Fossati, G.: From Grain to Pixel. Amsterdam University Press, Amsterdam (2009)

    Google Scholar 

  16. Gschwind, R., Frey, F.: Digital reconstruction of faded color photographs. Extrait de la Revue Informatique et Statistique dans les Sciences humaines XXXIII (1997)

    Google Scholar 

  17. Plutino, A., Crespi, A., Morabito, G., Sarti, B., Rizzi, A.: FiRe2: a call for a film repository of technical data and memories for photo and movie restoration. Cinergie - Il Cinema e le altre Arti 20, 69–83 (2021)

    Google Scholar 

  18. Barricelli, B.R., Casiraghi, E., Lecca, M., Plutino, A., Rizzi, A.: A cockpit of multiple measures for assessing film restoration quality. Pattern Recogn. Lett. 131, 178–184 (2020)

    Article  Google Scholar 

  19. Jones, L.A., Condit, H.R.: The brightness scale of exterior scenes and the computation of correct photographic exposure. J. Opt. Soc. Am. 31, 651–678 (1941)

    Article  Google Scholar 

  20. Vos, J.J., Van Den Berg, T.J.T.P.: Disability glare. CIE Res. Note 135/1 (1999)

    Google Scholar 

  21. Wright, W.D.: A plea to Edwin Land. Color. Res. Eng. 12, 119–120 (1987)

    Article  Google Scholar 

  22. Rizzi, A.: What if colorimetry does not work. In: Proceedings of the IS & T International Symposium on Electronic Imaging: Color Imaging XXVI: Displaying, Processing, Hardcopy, and Applications 2021, pp. 323-1–323-6. Society for Imaging Science and Technology, Springfield (2021)

    Google Scholar 

  23. Rizzi, A.: Colour after colorimetry. Color. Technol. 137, 22–28 (2021)

    Article  Google Scholar 

  24. Land, E.H.: The retinex theory of color vision. Sci. Am. 237, 108–129 (1977)

    Article  Google Scholar 

  25. McCann, J.J., Parraman, C., Rizzi, A.: Reflectance, illumination, and appearance in color constancy. Front. Psychol. 5, 5 (2014)

    Article  Google Scholar 

  26. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Article  Google Scholar 

  27. McCann, J.J.: Retinex at 50: color theory and spatial algorithms, a review. J. Electron. Imaging 26, 031204 (2017)

    Article  Google Scholar 

  28. McCann, J.J.: McCann Imaging. http://mccannimaging.com/Retinex

  29. Rizzi, A., Bonanomi, C.: Milano Retinex family. J. Electron. Imaging 26, 031207 (2017)

    Article  Google Scholar 

  30. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vision Comput. 18, 1005–1014 (2000)

    Article  Google Scholar 

  31. Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the Retinex algorithm. J. Opt. Soc. Am. A 22, 2613–2621 (2005)

    Article  MathSciNet  Google Scholar 

  32. Marini, D., Rizzi, A.: Colour constancy and optical illusions: a computer simulation with Retinex theory. In: 7th International Conference on Image Analysis and Processing (ICIAP93), pp. 657–660 (1993)

    Google Scholar 

  33. Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite Retinex: a new implementation based on a colony of intelligent agents. J. Electron. Imaging 23, 013006 (2014)

    Article  Google Scholar 

  34. Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray Retinex: a new Retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 16, 162–171 (2006)

    Article  MathSciNet  Google Scholar 

  35. Banić, N., Lončarić, S.: Light random sprays Retinex: exploiting the noisy illumination estimation. IEEE Sig. Process. Lett. 20, 1240–1243 (2013)

    Article  Google Scholar 

  36. Banić, N., Lončarić, S.: Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction. J. Opt. Soc. Am. A 32, 2136–2147 (2015)

    Article  Google Scholar 

  37. Kolås, Ø., Farup, I., Rizzi, A.: Spatio-temporal Retinex-inspired envelope with stochastic sampling: a framework for spatial color algorithms. J. Imaging Sci. Technol. 55, 40503–1 (2011)

    Article  Google Scholar 

  38. Gianini, G., Manenti, A., Rizzi, A.: Qbrix: a quantile-based approach to retinex. J. Opt. Soc. Am. A 31, 2663–2673 (2014)

    Article  Google Scholar 

  39. Gatta, C., Rizzi, A., Marini, D.: Ace: An automatic color equalization algorithm. In: Conference on Colour in Graphics, Imaging, and Vision, pp. 316–320. Society for Imaging Science and Technology (2002)

    Google Scholar 

  40. Plutino, A., Barricelli, B.R., Casiraghi, E., Rizzi, A.: Scoping review on automatic color equalization algorithm. J. Electron. Imaging 30, 020901 (2021)

    Article  Google Scholar 

  41. Frankle, J.A., McCann, J.J.: Method and apparatus for lightness imaging. Google Patents, US Patent 4,384,336 (1983)

    Google Scholar 

  42. McCann, J.J.: Lessons learned from mondrians applied to real images and color gamuts. In: Color and Imaging Conference, pp. 1–8. Society for Imaging Science and Technology (1999)

    Google Scholar 

  43. Pan, S., An, X., He, H.: Adapting iterative Retinex computation for high-dynamic-range tone mapping. J. Electron. Imaging 22, 023006 (2013)

    Article  Google Scholar 

  44. Sobol, R.: Improving the Retinex algorithm for rendering wide dynamic range photographs. J. Electron. Imaging 13, 65–74 (2004)

    Article  Google Scholar 

  45. Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad. Sci. 83, 3078–3080 (1986)

    Article  Google Scholar 

  46. Funt, B., Ciurea, F., McCann, J.J.: Retinex in matlab. In: Color and Imaging Conference, pp. 112–121. Society for Imaging Science and Technology (2000)

    Google Scholar 

  47. Jobson, D.J., Rahman, Z., Woodell, G.A.: Retinex image processing: improved fidelity to direct visual observation. In: Color and Imaging Conference, pp. 124–125. Society for Imaging Science and Technology (1996)

    Google Scholar 

  48. Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006 (1996)

    Google Scholar 

  49. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15, 2820–2830 (2006)

    Article  Google Scholar 

  50. Saponara, S., Fanucci, L., Marsi, S., Ramponi, G., Kammler, D., Witte, E.M.: Application-specific instruction-set processor for retinex-like image and video processing. IEEE Trans. Circuits Syst. II: Express Briefs 54, 596–600 (2007)

    Google Scholar 

  51. Provenzi, E.: Computational Color Science: Variational Retinex-like Methods. John Wiley & Sons, New York (2017)

    Book  Google Scholar 

  52. Caselles, V., Morel, J.-M., Sapiro, G., Tannenbaum, A.R.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7, 1058–1072 (1998)

    Article  Google Scholar 

  53. Sapiro, G.: Geometric partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  54. Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differ. Equ. 135, 238–268 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16, 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  56. Hurlbert, A.: Formal connections between lightness algorithms. J. Opt. Soc. Am. A 3, 1684–1693 (1986)

    Article  Google Scholar 

  57. Blake, A.: Boundary conditions for lightness computation in Mondrian world. Comput. Vision Graph. Image Process. 32, 314–327 (1985)

    Article  Google Scholar 

  58. Morel, J.-M., Petro, A.B., Sbert, C.: A PDE formalization of Retinex theory. IEEE Trans. Image Process. 19, 2825–2837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Limare, N., Petro, A.B., Sbert, C., Morel, J.-M.: Retinex Poisson equation: a model for color perception. Image Process. Line 1, 39–50 (2011)

    Article  Google Scholar 

  60. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vision 52, 7–23 (2003)

    Article  MATH  Google Scholar 

  61. Gianini, G., Mio, C., Fossi, L.G., Rizzi, A.: Gradient attenuation as an emergent property of reset-based Retinex models. In: Proceedings of the 11th International Conference on Management of Digital EcoSystems, pp. 324–329 (2019)

    Google Scholar 

  62. Rizzi, A., McCann, J.J.: On the behavior of spatial models of color. In: Proceedings of SPIE and IS& T Electronic Imaging (2007)

    Google Scholar 

  63. Islam, A.T., Farup, I.: Spatio-temporal colour correction of strongly degraded movies. In: Color Imaging XVI: Displaying, Processing, Hardcopy, and Applications, vol. 7866, pp. 278–292 (2011).

    Google Scholar 

  64. Rizzi, A., Berolo, A.J., Bonanomi, C., Gadia, D.: Unsupervised digital movie restoration with spatial models of color. Multimed. Tools Appl. 75, 3747–3765 (2016)

    Article  Google Scholar 

  65. Machidon, O.-M., Ivanovici, M.: Digital color restoration for the preservation of reversal film heritage. J. Cult. Herit. 33 181–190 (2018)

    Article  Google Scholar 

  66. Rizzi, A., Gatti, L., Kránicz, B., Berolo, A.J.: A mixed perceptual and physical-chemical approach for the restoration of faded positive films. In: Conference on Colour in Graphics, Imaging, and Vision, pp. 292–295. Society for Imaging Science and Technology (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Rizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plutino, A., Sarti, B., Rizzi, A. (2023). Models and Mathematical Issues in Color Film Restorations. In: Bretti, G., Cavaterra, C., Solci, M., Spagnuolo, M. (eds) Mathematical Modeling in Cultural Heritage. MACH 2021. Springer INdAM Series, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-99-3679-3_13

Download citation

Publish with us

Policies and ethics