Skip to main content

Artificial Intelligence: Revolution in Assisted Reproductive Technology

  • Conference paper
  • First Online:
Proceedings of International Conference on Communication and Computational Technologies (ICCCT 2023)

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 241 Accesses

Abstract

Artificial intelligence is the imitation of cognitive functions of the human intelligence process, such as machine learning, thinking, and perception. In the past few years, artificial intelligence has grown tremendously in the medical field by providing more accurate analysis and efficient diagnostics like giving data-driven clinical decision support (CDS) to doctors. It is now exploring robotic surgery, new drug discovery, patient care, pathology, etc. Though it is growing at an incomparable rate, how far this technology has reached and evolved in reproductive medicine, especially in assisted reproductive technology is still a question. This paper is structured in a way reviewing the artificial intelligence-based assisted reproductive technology (ART) evaluation methods and dataset availability in sperm, embryo, oocyte, and live birth analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrillo H, Villarreal J, Sotaquira M, Goelkel M, Gutierrez R (2007) A computer aided tool for the assessment of human sperm morphology. In: Proceedings of the 7th IEEE ınternational conference on bioinformatics and bioengineering (BIBE), Boston, 14–17, pp 1152–1157

    Google Scholar 

  2. Shaker F (2018) Human sperm head morphology dataset (HuSHeM). Mendeley Data, V3

    Google Scholar 

  3. Chandra S et al (2022) Prolificacy assessment of spermatozoan via state-of-the-art deep learning frameworks. IEEE Access 10:13715–13727

    Article  Google Scholar 

  4. Tortumlu O, Ilhan H (2020) The analysis of mobile platform based CNN networks in the classification of sperm morphology. pp 1–4

    Google Scholar 

  5. Tsai V, Zhuang B, Pong Y-H, Hsieh J-T, Chang H-C (2020) Web- and artificial ıntelligence–based ımage recognition for sperm motility analysis: verification study. JMIR Med Inform

    Google Scholar 

  6. McCallum C, Riordon J, Wang Y, Kong T, You JB, Sanner S, Lagunov A, Hannam TG, Jarvi K, Sinton D (2019) Deep learning-based selection of human sperm with high DNA integrity. Commun Biol

    Google Scholar 

  7. Iqbal I, Mustafa G, Ma J (2020) Deep learning-based morphological classification of human sperm heads. Diagnostics (Basel)

    Google Scholar 

  8. Ory J, Tradewell MB, Blankstein U, Lima TF, Nackeeran S, Gonzalez DC, Nwefo E, Moryousef J, Madhusoodanan V, Lau S, Jarvi K, Ramasamy R (2022) Artificial ıntelligence based machine learning models predict sperm parameter upgrading after varicocele repair: a multi-ınstitutional analysis. World J Mens Health 618–626

    Google Scholar 

  9. Liu R, Wang M, Wang M, Yin J, Yuan Y, Liu J (2021) Automatic microscopy analysis with transfer learning for classification of human sperm. Appl Sci

    Google Scholar 

  10. Thirumalaraju P, Bormann CL, Kanakasabapathy MK, Doshi F, Souter I, Dimitriadis I, Shafiee H (2018) Automated sperm morpshology testing using artificial intelligence. Fertility and Sterility

    Google Scholar 

  11. Haugen T, Hicks S, Andersen J, Witczak O, Hammer H, Borgli R, Halvorsen P, Riegler M (2019) VISEM: a multimodal video dataset of human spermatozoa. pp 261–266

    Google Scholar 

  12. Chen, Li C, Zou S, Rahaman MM, Yao Y, Chen H, Yang H, Zhao P, Hu W, Liu W, Grzegorzek M (2022) SVIA dataset: a new dataset of microscopic videos and images for computer-aided sperm analysis. Biocybernet Biomed Eng 42(1)

    Google Scholar 

  13. Chang V, Garcia A, Hitschfeld N, Härtel S (2017) Gold-standard for computer-assisted morphological sperm analysis. Comput Biol Med 83:143–150

    Article  Google Scholar 

  14. Arsalan M, Haider A, Choi J, Park KR (2022) Detecting blastocyst components by artificial ıntelligence for human embryological analysis to ımprove success rate of ın vitro fertilization. J Pers Med 12(2):124

    Google Scholar 

  15. Loewke K, Cho JH, Brumar CD, Maeder-York P, Barash O, Malmsten JE, Zaninovic N, Sakkas D, Miller KA, Levy M, VerMilyea MD (2022) Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil Steril

    Google Scholar 

  16. Uysal N, Yozgatli T, Yıldızcan E, Kar E, Gezer M, Baştu E (2022) Comparison of U-net based models for human embryo segmentation. Bilişim Teknolojileri Dergisi

    Google Scholar 

  17. Thirumalaraju P, Kanakasabapathy MK, Bormann C, Gupta R, Pooniwala R, Kandula H, Souter I, Dimitriadis I, Shafiee H (2021) Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality. Heliyon

    Google Scholar 

  18. Liao Q, Zhang Q, Feng X et al (2021) Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Commun Biol 4:415

    Article  Google Scholar 

  19. Wang S, Zhou C, Zhang D, Chen L, Sun H (2021) A deep learning framework design for automatic blastocyst evaluation with multifocal images. IEEE Access 9:18927–18934

    Article  Google Scholar 

  20. Septiandri AA, Jamal A, Iffanolida PA, Riayati O, Wiweko B (202) Human blastocyst classification after ın vitro fertilization using deep learning. In: 2020 7th International conference on advance ınformatics: concepts, theory and applications (ICAICTA), pp 1–4

    Google Scholar 

  21. VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M (2020) Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod 770–784

    Google Scholar 

  22. Liu Z, Huang B, Cui Y, Xu Y, Zhang B, Zhu L, Wang Y, Jin L, Wu D (2019) Multi-task deep learning with dynamic programming for embryo early development stage classification from time-lapse videos. IEEE Access 1–1

    Google Scholar 

  23. Chen T-J, Zheng W-L, Liu C-H, Huang I, Lai H-H, Liu M (2019) Using deep learning with large dataset of microscope ımages to develop an automated embryo grading system. Fertility Reprod 1–6

    Google Scholar 

  24. Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, Sigaras A, Lavery S, Cooper LAD, Hickman C, Meseguer M, Rosenwaks Z, Elemento O, Zaninovic N, Hajirasouliha I (2019) Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med

    Google Scholar 

  25. Kragh MF, Rimestad J, Berntsen J, Karstoft H (2019) Automatic grading of human blastocysts from time-lapse imaging. Comput Biol Med

    Google Scholar 

  26. Saeedi P, Yee D, Au J, Havelock J (2017) Automatic identification of human blastocyst components via texture. IEEE Trans Biomed Eng 64(12):2968–2978

    Article  Google Scholar 

  27. Kanakasabapathy MK, Thirumalaraju P, Kandula H et al (2021) Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nat Biomed Eng 5:571–585

    Article  Google Scholar 

  28. Gomez T, Feyeux M, Boulant J, Normand N, David L, Paul-Gilloteaux P, Fréour T, Mouchère H (2022) A time-lapse embryo dataset for morphokinetic parameter prediction. Data Brief

    Google Scholar 

  29. Rienzi L, Balaban B, Ebner T, Mandelbaum J (2012) The oocyte. Human reproduction, Oxford, England

    Google Scholar 

  30. Baručić D, Kybic J, Teplá O, Topurko Z, Kratochvílová I (2021) Automatic evaluation of human oocyte developmental potential from microscopy images. In: Proceedings SPIE, 17th ınternational symposium on medical ınformation processing and analysis, vol 12088

    Google Scholar 

  31. Anna T, Piotr P, Ryszard W, Grzegorz M (2021) Semantic segmentation of human oocyte images using deep neural networks. BioMed Eng OnLine

    Google Scholar 

  32. Letort G, Eichmuller A, Da Silva C, Nikalayevich E, Crozet F, Salle J, Minc N, Labrune E, Wolf JP, Terret ME, Verlhac MH (2022) An interpretable and versatile machine learning approach for oocyte phenotyping. J Cell Sci

    Google Scholar 

  33. Goyal A, Kuchana M, Ayyagari KPR (2020) Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci Rep

    Google Scholar 

  34. Yasunari M, Toshihiro H, Rei H, Nobuyoshi H (2022) Deep Learning to predicting live births and aneuploid miscarriages from images of blastocysts combined with maternal age. pp 10–21

    Google Scholar 

  35. Bo H, Shunyuan Z, Bingxin M, Yongle Y, Shengping Z, Lei J (2022) Using deep learning to predict the outcome of live birth from more than 10,000 embryo data. BMC Pregnancy and Childbirth

    Google Scholar 

  36. Yasunari M, Toshihiro H, Rei H, Nobuyoshi H (2019) Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod Med Biol

    Google Scholar 

  37. Bori L, Paya E, Alegre L, Viloria TA, Remohi JA, Naranjo V, Meseguer M (2020) Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril 1232–1241

    Google Scholar 

  38. Miyagi Y, Habara T, Hirata R, Hayashi N (2020) Predicting a live birth by artificial intelligence incorporating both the blastocyst image and conventional embryo evaluation parameters. Artif Intell Med Imaging 94–107

    Google Scholar 

  39. Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C, Chen G, Wang H, Ma D, Liao S (2019) Artificial intelligence in reproductive medicine. Reproduction

    Google Scholar 

  40. Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM, Nogueira MFG, Rocha JC (2020) Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet

    Google Scholar 

  41. Raef B, Ferdousi R (2019) A review of machine learning approaches in assisted reproductive technologies. Acta Inform Med 205–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Barkavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barkavi, R., Yamuna, G., Jayaram, C. (2023). Artificial Intelligence: Revolution in Assisted Reproductive Technology. In: Kumar, S., Hiranwal, S., Purohit, S., Prasad, M. (eds) Proceedings of International Conference on Communication and Computational Technologies. ICCCT 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-3485-0_76

Download citation

Publish with us

Policies and ethics