Skip to main content

Visual Object Segmentation Improvement Using Deep Convolutional Neural Networks

  • Chapter
  • First Online:
Object Tracking Technology

Abstract

Deep convolutional neural networks (CNNs) for object acknowledgment have learned portrayals that are all-around contemplated representation of handling progression in optical framework. It is lately used for classifying images from enormous sets of data. A CNN can efficiently handle fundamental filtering components that integrate all the functions together in a systematic way to facilitate the accurate characterization of implicit ideas in object classification and recognition. Practically, majority of the datasets will be scattered over irregular dimensions which makes the linear time-invariant filters to identify and separate them. Here comes the deep CNN where different network models were developed to improve the modelling classification. In order to boost the nonlinearity of the image regions in datasets, a multi-layered neural schema was rolled in. This multi-layered neural schema is capable of abstracting given sets of data effectively in regions of interest. CNN portrayals of visual boosts have recently been displayed to match the handling stages in the back floods of the visual framework utilizing useful attractive reverberation imaging. It’s been less completely explored if this connection among models and mind flags additionally holds for movement recorded at high transient goal. Merging CNN-based models with magnetoencephalography (MEG) gives various options to respond to this inquiry. The system will be able to analyze and classify new image datasets if the deep neural network schemes are involved. The concept of deep learning and neural network goes hand in hand which enhances system efficiency. While MEG signals were being recorded, sentient subjects flaccidly examined 1000 photographs of objects. CNNs are utilized to address their source-recreated cerebrum action, which had a feedforward clear over the visual chain of command somewhere in the range of 75 and 200 ms following boost beginning. Fifty participants with an age group of 35–55 showed predictable activity at 45–75 ms after the start of the image capturing scenario. Analyses were made on the trajectories of the images of the encephalography, and observations were made that the representations of the organization layer took on this spatiotemporal trajectory, with the advancing organization model’s step for achieving depiction represented across numerous sections of the neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rakesh, B., Mahindra, K., Goud, M. S. V., Arun Vignesh, N., Padma, T., & Panigrahy, A. K. (2020). Facile approach to mitigate thermal issues in 3D IC integration using effective FIN orientation. Materials Today: Proceedings, 33(Part 7), 3085–3088. ISSN 2214-7853.

    Google Scholar 

  2. Kumar, A. (2023), Visual object tracking using deep learning. CRC Press.

    Google Scholar 

  3. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478.

    Article  Google Scholar 

  4. Shilpa, B., Joseph, A. B., Vignesh, N. A., & Kumaresham, N. (2020). A brief review on techniques used for Breast cancer detection using antennas. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–3). https://doi.org/10.1109/ICCCI48352.2020.9104147

    Chapter  Google Scholar 

  5. Wei-bin, C., & Zhejiang, W. (2010). A new watershed algorithm for cellular image segmentation based on mathematical morphology. In International Conference on Machine Vision and Human-Machine Interface (Vol. 53, pp. 2405–2414). IEEE.

    Google Scholar 

  6. Walia, G. S., Kumar, A., Saxena, A., Sharma, K., & Singh, K. (2020). Robust object tracking with crow search optimized multi-cue particle filter. Pattern Analysis and Applications, 23, 1439–1455.

    Google Scholar 

  7. Cichy, R. M., & Teng, S. (2016). Resolving the neural dynamics of visual and auditory scene processing in the human brain: A methodological approach. Philosophical Transactions of the Royal Society B, 372, 1–11.

    Google Scholar 

  8. Ramisetti, C., et al. (2022). An Ultrasonic Sensor-based blind stick analysis with instant accident alert for Blind People. In 2022 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–13). https://doi.org/10.1109/ICCCI54379.2022.9740786

    Chapter  Google Scholar 

  9. Kumar, A., Walia, G. S., & Sharma, K. (2020). Recent trends in multicue based visual tracking: A review. Expert Systems with Applications, 162, 113711.

    Google Scholar 

  10. Kaur, A., & Verma, A. (2013). The marker-based watershed segmentation – A review. International Journal of Engineering and Innovative Technology (IJEIT), 3(3), 171–174.

    Google Scholar 

  11. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

    Google Scholar 

  12. Arun Vignesh, N., & Poongodi, P. (2016). Analysis of localized quality of service improvement architecture for wireless LAN. Wireless Personal Communications, 90, 701–711. https://doi.org/10.1007/s11277-016-3188-x

    Article  Google Scholar 

  13. Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821, 2020.

    Google Scholar 

  14. Bosch, S.E., Seeliger, K., van Gerven, M.A.J., 2016. Modeling cognitive processes with neural reinforcement learning. bioRxiv preprint bioRxiv:084111.

    Google Scholar 

  15. Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The Bank of Standardized Stimuli (BOSS): A new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS One, 5(5), e10773.

    Article  Google Scholar 

  16. Brodeur, M. B., Guerard, K., & Bouras, M. (2014). The Bank of Standardized Stimuli (BOSS) phase II: 930 new normative photos. PLoS One, 9(9), e106953.

    Article  Google Scholar 

  17. Kumari, C. U., Arun Vignesh, N., Panigrahy, A. K., Ramya, L., & Padma, T. (2019). Fungal Disease in cotton leaf detection and classification using neural networks and support vector machine. International Journal of Innovative Technology and Exploring Engineering (IJITEE).

    Google Scholar 

  18. Eickenberg, M., Gramfort, A., Varoquaux, G., & Thirion, B. (2016). Seeing it all: Convolutional network layers map the function of the human visual system. NeuroImage, 152, 184–194.

    Article  Google Scholar 

  19. Geusebroek, J.-M., Burghouts, G. J., & Smeulders, A. W. (2005). The Amsterdam library of object images. International Journal of Computer Vision, 61(1), 103–112.

    Article  Google Scholar 

  20. Oksuz, I., et al. (2020). Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Transactions on Medical Imaging, 39(12), 4001–4010. https://doi.org/10.1109/TMI.2020.3008930

    Article  Google Scholar 

  21. Grau, V., Mewes, A. U. J., Alcaniz, M., Kikinis, R., & Warfield, S. K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4), 447–458.

    Article  Google Scholar 

  22. Clarke, A. (2014). Dynamic information processing states revealed through neurocognitive models of object semantics. Language, Cognition and Neuroscience, 30(4), 409–419.

    Article  Google Scholar 

  23. Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience. MIT Press.

    MATH  Google Scholar 

  24. Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (pp. 1026–1034).

    Google Scholar 

  26. Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. In European Conference on Computer Vision (pp. 746–760). Springer.

    Google Scholar 

  27. Ji, X., Li, Y., Cheng, J., Yu, Y., & Wang, M. (2015). Cell image segmentation based on an improved watershed algorithm. In 8th International Congress on Image and Signal Processing (CISP) (pp. 433–437). IEEE.

    Google Scholar 

  28. Sulaiman, S. N., & Isa, N. A. M. (2010). Adaptive fuzzy-K means clustering algorithm for image segmentation [J]. IEEE Transactions on Consumer Electronics, 56(4).

    Google Scholar 

  29. Akhil, S. S., Vignesh, N. A., Jayabalan, S., Karthikeyan, E., Pillai, A., Kumari, C. U., & Panigrahy, A. K. (2019, July). A Novel Approach for detection of the symptomatic patterns in the acoustic biological signal using Truncation Multiplier. In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (Vol. 1, pp. 49–53). IEEE.

    Google Scholar 

  30. Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171–178.

    Article  Google Scholar 

  31. Gallant, J. L., Nishimoto, S., Naselaris, T., & Wu, M. C. (2011). System identification, encoding models and decoding models: A powerful new approach to fMRI research. In N. Kriegeskorte (Ed.), Visual population codes, Chapter 6 (pp. 163–188). MIT Press.

    Chapter  Google Scholar 

  32. Güçlü, U., & van Gerven, M. A. J. (2015). Increasingly complex representations of natural movies across the dorsal stream are shared between subjects. NeuroImage, 145, 320–336.

    Google Scholar 

  33. Güçlü, U., & van Gerven, M. A. J. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014.

    Article  Google Scholar 

  34. Kanithan, S., Arun Vignesh, N., Karthikeyan, E., & Kumareshan, N. (2020). An intelligent energy efficient cooperative MIMO-AF multi-hop and relay based communications for Unmanned Aerial Vehicular networks. Computer Communications, 154, 254–261. ISSN 0140-3664.

    Article  Google Scholar 

  35. Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k means clustering algorithm [J]. Expert Systems with Applications, 40(1), 200–210.

    Article  Google Scholar 

  36. Güçlütürk, Y., Güçlü, U., van Gerven, M. A. J., & van Lier, R. (2016). Deep Impression: Audiovisual deep residual networks for multimodal apparent personality trait recognition. In Computer Vision – ECCV 2016 Workshops Proceedings (Part III, pp. 349–358).

    Google Scholar 

  37. Güçlü, U., Güçlütürk, Y., Madadi, M., Escalera, S., Baro, X., Gonzalez, J., van Lier, R., & van Gerven, M. A. J. (2017). End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks. arXiv preprint arXiv: 1703.03305.

    Google Scholar 

  38. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanithan, S., Vignesh, N.A., Karthick SA (2023). Visual Object Segmentation Improvement Using Deep Convolutional Neural Networks. In: Kumar, A., Jain, R., Vairamani, A.D., Nayyar, A. (eds) Object Tracking Technology. Contributions to Environmental Sciences & Innovative Business Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3288-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3288-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3287-0

  • Online ISBN: 978-981-99-3288-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics