Skip to main content

Inkjet Printing Fabrication of Supercapacitors

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Abstract

Inkjet printing technology (IJP) is perceived as a significant innovation in the creation of large energy storage applications. This printing method has many benefits over traditional manufacturing processes, including contact-free elevated patterning, less expense, regulated material deposition, understanding specific, and interoperability with many material types. Owing to such exceptional benefits, much study has been put into the IJP methodology to fabricate electrochemical energy storage technologies, especially supercapacitors (SCs). Such efforts have concentrated on rationally forming and patterning the functional inks to fabricate the essential SC parts. It is necessary and crucial to have a thorough understanding of most of the current advances in InkJet printed SCs to further broaden the material design strategy and speed up technological advancement. To that end, this chapter will discuss the current advances in IJP of capacitive devices for energy storage, including the advancement of printable composite materials, their process of printing, and their supercapacitive performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

ASC:

Asymmetrical Supercapacitor 

BMIMBF4:

1-Butyl-3-methylimidazolium tetrafluoroborate

CIJ:

Continuous Inkjet Printing

CNF:

Cellulose Nano Fibril

CNT:

Carbon Nanotube

Cu:

Copper

CuxO:

Copper Oxide

CV:

Cyclic Voltammetry

DIW:

Direct Ink Writing

DoD:

Drop-on-Demand

ED:

Energy Density

EDX:

Energy Dispersive X-ray Analysis

Emf:

Electromotive Force

ETPTA:

Ethoxylated Trimethylolpropane Triacrylate

FCPF:

Flexible Composite Protein Film

GCD:

Galvanostatic Charge–Discharge

GO:

Graphene Oxide

IJP:

Inkjet Printing

KI:

Potassium Iodide

δ-MnO2:

Delta Manganese Dioxide

MP:

Mxene/PEDOT:PSS

MSC:

Microsupercapacitor

MWCNT:

Multi-Walled Carbon Nanotube

NF:

Nickel Foam

Ni(OH)2:

Nickel Hydroxide

Ni-Co LDH:

Nickel-Cobalt-Layered Double Hydroxide

NGP/PANI:

Graphene/Polyaniline

NiO:

Nickel Oxide

NSFE:

Nano Silver Flexible Electrode

PC :

Printed Circuit

PD:

Power Density

PEDOT: PSS:

Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate 

PET:

Polyethylene Terephthalate

PVA:

Poly (vinyl alcohol)

PVA–H3PO4:

Poly(vinyl alcohol)-Phosphoric Acid

PVA-KOH:

Poly (vinyl alcohol)-Potassium Hydroxide

PVDF:

Polyvinylidene Fluoride

rGO:

Reduced Graphene Oxide

RuO2:

Ruthenium Oxide

SC:

Supercapacitor

SDBS:

Sodium Dodecyl Benzenesulfonate

SEM:

Scanning Electron Microscopy

SWCNT:

Single-Walled Carbon Nanotube

Ti:

Titanium

UV:

Ultraviolet

XRD:

X-ray Diffraction

References

  1. Noori A et al (2019) Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev 48(5):1272–1341

    Article  Google Scholar 

  2. Huang L et al (2018) Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14(43):1800879

    Article  Google Scholar 

  3. An C et al (2019) Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv 1(12):4644–4658

    Article  Google Scholar 

  4. Qorbani M et al (2019) Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices. Chemsuschem 12(17):4064–4073

    Article  Google Scholar 

  5. Xiao Z et al 2019 Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 13(6):7024–7030

    Google Scholar 

  6. Sajedi-Moghaddam A et al (2019) Exfoliated transition metal dichalcogenide (MX2; M=Mo, W; X=S, Se, Te) nanosheets and their composites with polyaniline nanofibers for electrochemical capacitors. Appl Mater Today 16:280–289

    Article  Google Scholar 

  7. Das P, Wu Z-S (2020) MXene for energy storage: present status and future perspectives. J Phys: Energy 2(3):032004

    Google Scholar 

  8. Xia Y et al (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557:409–412

    Google Scholar 

  9. Wang J et al (2019) Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3(8):1800367

    Google Scholar 

  10. Li H et al (2019) Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater 9(15):1803987

    Article  Google Scholar 

  11. Liang J et al (2019) All-printed solid-state supercapacitors with versatile shapes and superior flexibility for wearable energy storage. J Mater Chem A 7(26):15960–15968

    Article  Google Scholar 

  12. Elder B et al (2020) Nanomaterial patterning in 3D printing. Adv Mater 32(17):1907142

    Article  Google Scholar 

  13. Shahiduzzaman M et al (2019) Oblique electrostatic inkjet-deposited TiO2 electron transport layers for efficient planar perovskite solar cells. Sci Rep 9(1):19494

    Article  Google Scholar 

  14. Seo J-WT et al (2019) Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl Mater Interfaces 11(6):5675–5681

    Article  Google Scholar 

  15. Huang T-T, Wu W (2019) Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J Mater Chem A 7(41):23280–23300

    Article  Google Scholar 

  16. Raut NC, Al-Shamery K (2018) Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C 6(7):1618–1641

    Article  Google Scholar 

  17. Hu G et al (2018) Functional inks and printing of two-dimensional materials. Chem Soc Rev 47(9):3265–3300

    Article  Google Scholar 

  18. Rafiq M et al (2022) Overview of printable nanoparticles through inkjet process: their application towards medical use. Microelectron Eng 266:111889

    Article  Google Scholar 

  19. Bernasconi R et al (2022) Piezoelectric drop-on-demand inkjet printing of high-viscosity inks. Adv Eng Mater 24:2100733

    Google Scholar 

  20. Bonaccorso F et al (2016) 2D-crystal-based functional inks. Adv Mater 28(29):6136–6166

    Article  Google Scholar 

  21. Fukuda K et al (2013) Profile control of inkjet printed silver electrodes and their application to organic transistors. ACS Appl Mater Interfaces 5(9):3916–3920

    Article  Google Scholar 

  22. Zhan Z et al (2017) Inkjet-printed optoelectronics. Nanoscale 9(3):965–993

    Article  Google Scholar 

  23. Lessing J et al (2014) Inkjet printing of conductive inks with high lateral resolution on Omniphobic “RF Paper” for paper-based electronics and MEMS. Adv Mater 26(27):4677–4682

    Article  Google Scholar 

  24. Jiang J et al (2016) Fabrication of transparent multilayer circuits by inkjet printing. Adv Mater 28(7):1420–1426

    Article  Google Scholar 

  25. Sun J et al (2015) Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl Mater Interfaces 7(51):28086–28099

    Article  Google Scholar 

  26. Gao M, Li L, Song Y (2017) Inkjet printing wearable electronic devices. J Mater Chem C 5(12):2971–2993

    Article  Google Scholar 

  27. Li L et al (2016) High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks. Adv Energy Mater 6(20):1600909

    Article  Google Scholar 

  28. Le LT et al (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 13(4):355–358

    Google Scholar 

  29. Hu L et al (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper.  Appl Phys Lett 96:183502

    Google Scholar 

  30. Stempien Z et al (2019) In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications. Synth Met 256:116144

    Article  Google Scholar 

  31. Ujjain S K et al (2016) Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Mater Res Bull 83:167–171

    Article  Google Scholar 

  32. Giannakou P et al (2020) Water-transferred, Inkjet-printed supercapacitors toward conformal and epidermal energy storage. ACS Appl Mater Interfaces 12(7):8456–8465

    Google Scholar 

  33. Wang Y et al (2018) Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49:481–488

    Article  Google Scholar 

  34. Qian J et al (2015) Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. Angew Chem Int Ed 54: 6800–6803

    Google Scholar 

  35. Kim Y et al (2012) Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Curr Appl Phys 12(2):473–478

    Article  Google Scholar 

  36. Tang Z, Tang C-h, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

    Google Scholar 

  37. Li X et al (2019) Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors. Chem Eng J 375:121988

    Article  Google Scholar 

  38. Sun Z, Lu X (2012) A solid-state reaction route to anchoring Ni(OH)2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Ind Eng Chem Res 51(30):9973–9979

    Google Scholar 

  39. Wang H et al (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  Google Scholar 

  40. Bai Y et al (2015) Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. J Mater Chem A 3(23):12530–12538

    Article  Google Scholar 

  41. Liu S et al (2017) Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A 5(3):1043–1049

    Article  Google Scholar 

  42. Zhang C et al (2018) Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Func Mater 28(9):1705506

    Article  Google Scholar 

  43. Ma J et al (2021) Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv Energy Mater 11(23):2100746

    Google Scholar 

  44. Wen D et al (2022) Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. J Alloy Compd 900:163436

    Article  Google Scholar 

  45. Li X et al (2019) Layer-by-layer inkjet printing GO film and Ag nanoparticles supported nickel cobalt layered double hydroxide as a flexible and binder-free electrode for supercapacitors. J Colloid Interface Sci 557:691–699

    Article  Google Scholar 

  46. Nagaraju G et al (2016) Hierarchical Ni–Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2):812–825

    Google Scholar 

  47. Li X et al (2020) Layer by layer inkjet printing reduced graphene oxide film supported nickel cobalt layered double hydroxide as a binder-free electrode for supercapacitors. Appl Surf Sci 509:144872

    Google Scholar 

  48. Li M et al (2016) The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta 206:108–115

    Google Scholar 

  49. Fadakar Z et al (2015) Fabrication of a supercapacitor with a PVA–KOH–KI electrolyte and nanosilver flexible electrodes.  Microelectron Eng 140:29–32

    Article  Google Scholar 

  50. Li B et al (2019) Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl Mater Interfaces 11(49):46044–46053

    Article  Google Scholar 

  51. Li J et al (2013) Efficient inkjet printing of graphene. Adv Mater 25(29):3985–3992

    Article  Google Scholar 

  52. Momota M R et al (2023) Fabrication and characterization of flexible solid-state MIM supercapacitor with inkjet-printing of stacked Ag NP and polymer dielectric layers. 2023 IEEE 16th Dallas circuits and systems conference (DCAS), pp 1–5. Denton, TX, USA

    Google Scholar 

  53. Liu J, Ye J, Pan F et al (2019) Solid-state yet flexible supercapacitors made by inkjet-printing 695 hybrid ink of carbon quantum dots/graphene oxide platelets on paper. Sci China Mater 62:545–554

    Google Scholar 

  54. Jiang L et al (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater 5(15):1500771

    Article  Google Scholar 

  55. Miller J, Outlaw R, Holloway BC (2011) Graphene electric double layer capacitor with ultra-high-power performance. Electrochim Acta 56:10443–10449

    Article  Google Scholar 

  56. Zhao B et al (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427

    Article  Google Scholar 

  57. Fang Y et al (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24(47):6348–6355

    Article  Google Scholar 

  58. Atif R, Shyha I, Inam F (2016) Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—A review. Polymers 8(8):281

    Google Scholar 

  59. Li L-X, Li F (2011) The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26(3):224–228

    Article  Google Scholar 

  60. Chen C et al (2021) Smart power system of biocompatible and flexible micro-supercapacitor. Appl Phys Lett 118(7):073902

    Article  Google Scholar 

  61. Gu S et al (2016) Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res 9(2):424–434

    Article  Google Scholar 

  62. Jabeen N et al (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29(32):1700804

    Google Scholar 

  63. Cai J, Lv C, Watanabe A (2018) Laser direct writing and selective metallization of metallic circuits for integrated wireless devices. ACS Appl Mater Interfaces 10(1):915–924

    Article  Google Scholar 

  64. Hou C et al (2019) A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15(11):1805084

    Article  Google Scholar 

  65. Xu Y et al (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sources 248:483–488

    Article  Google Scholar 

  66. Wang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

    Article  Google Scholar 

  67. Xu Y et al (2013) Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater 3(8):1035–1040

    Article  Google Scholar 

  68. Diao J (2018) Flexible supercapacitor based on inkjet printed graphene@polyaniline nanocomposites with ultrahigh capacitance. Macromol Mater Eng 303(6):1800092

    Google Scholar 

  69. Chi K et al (2014) Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6:16312–16319

    Google Scholar 

  70. Chen P et al (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3(8):594–603

    Google Scholar 

  71. Pei Z et al (2017) Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett 9(19):2520–2531

    Google Scholar 

  72. Huang L et al (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4:675–684

    Google Scholar 

  73. Banti A et al (2023) Electrochemical studies of inkjet printed semi-transparent NiCo2O4/ITO supercapacitor electrodes. Catalysts 13:1110

    Google Scholar 

  74. Wu Y et al (2022) Aerosol jet printing of hybrid Ti3C2Tx/C nanospheres for planar micro-supercapacitors. Frontiers in Chemistry 10

    Google Scholar 

  75. Chang Q et al (2018) Water-soluble hybrid graphene ink for gravure-printed planar supercapacitors. Adv Electron Mater 4(8):1800059

    Google Scholar 

  76. Grau G et al (2016) Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flex Print Electron 1(2):023002

    Article  MathSciNet  Google Scholar 

  77. Hyun WJ et al (2015) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27(1):109–115

    Article  Google Scholar 

  78. Xiao Z et al (2020) Materials development and potential applications of transparent ceramics: a review. Mater Sci Eng R Rep 139:100518

    Article  Google Scholar 

  79. Choi K-H et al (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9(9):2812–2821

    Article  Google Scholar 

  80. de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  Google Scholar 

  81. Tian D, Song Y, Jiang L (2013) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42(12):5184–5209

    Article  Google Scholar 

  82. Kuang M, Wang L, Song Y (2014) Controllable printing droplets for high-resolution patterns. Adv Mater 26(40):6950–6958

    Article  Google Scholar 

  83. Cheng T et al (2016) Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT: PSS/Ag grid electrodes. J Mater Chem A 4(36):13754–13763

    Article  Google Scholar 

  84. Giannakou P, Slade RCT, Shkunov M (2020) Cyclic voltammetry studies of inkjet-printed NiO supercapacitors: effect of substrates, printing, and materials. Electrochim Acta 353:136539

    Google Scholar 

  85. Wang S et al (2015) Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J Mater Chem A 3(5):2407–2413

    Google Scholar 

  86. Zhang T, Li X, Asher E et al (2018) Paper with power: engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors. Adv Funct Mater 28:1803600

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Technology Mission Division (Energy, Water & all Others), Department of Science & Technology, Ministry of Science & Technology, Government of India, New Delhi, India for the financial support under the Scheme of IC-MAP-2021, Project Title: DST-Storage MAP (Ref. No: DST/TMD/IC-MAP/2K20/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananthakumar Ramadoss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanan, K.R.H., Kannan, S., Ramadoss, A. (2024). Inkjet Printing Fabrication of Supercapacitors. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics