Skip to main content

Environmental Applications of Carbon-Based Supercapacitors

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Abstract

In the modern world, energy storage devices have a key role due to the increasing need for sustainable energy. Carbon-derived materials are studied widely worldwide for supercapacitor and battery applications due to their diverse structural, electrical, mechanical, and chemical properties. As the world is moving toward environmentally friendly materials, practices, and technologies, these carbon-based modern materials are one of the best options available. These materials can be synthesized using several green synthesis methods and easily recycled to reduce the production of e-waste. Even though the performance of recycled carbon materials reduces, they can be utilized for other applications, such as water and air treatments. This book chapter discusses the role of carbon in supercapacitor applications and how it can be synthesized, recycled, and reused properly to reduce the amount of e-waste and its effects in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yasoda KY et al (2021) Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application. Mater Today Chem 19:100394

    Article  Google Scholar 

  2. Miller JR, SimonP (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    Google Scholar 

  3. Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    Google Scholar 

  4. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4(3):453–489

    Article  Google Scholar 

  5. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors-an overview. Int J Electrochem Sci 3(11):1196–1217

    Google Scholar 

  6. Wang H et al (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Google Scholar 

  7. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53(3):1083–1091

    Article  Google Scholar 

  8. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1(8):2817–2827

    Article  Google Scholar 

  9. Vangari M, Pryor T, Jiang Li (2013) Supercapacitors: Review of Materials. J Energy Eng (Ç) 2:72–79

    Article  Google Scholar 

  10. Pomerantseva E et al (2019) Energy storage: The future enabled by nanomaterials. Science 366(6468):eaan8285

    Google Scholar 

  11. Lv T et al (2018) Nanocarbon‐based materials for flexible all‐solid‐state supercapacitors. Adv Mater 30(17):1705489

    Google Scholar 

  12. Miao L et al (2020) Recent advances in carbon-based supercapacitors. Mater Adv 1(5):945–966

    Google Scholar 

  13. Hu Y, Shenderova OA, Brenner DW (2007) Carbon nanostructures: morphologies and properties. J Comput Theor Nanosci 4(2):199–221

    Article  Google Scholar 

  14. Falcao EHL, Wudl F (2007) Carbon allotropes: beyond graphite and diamond. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 82(6):524–531

    Google Scholar 

  15. Hou H et al (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium‐ion b1atteries with ultralong cycle life. Adv Mater 27(47):7861–7866

    Google Scholar 

  16. Wang L et al (2015) Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon 94:472–478

    Google Scholar 

  17. Liu R et al (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133(39):15221–15223

    Google Scholar 

  18. Semeniuk M et al (2019) Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 13(6):6224–6255

    Google Scholar 

  19. Lin L, Zhang S (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48(82):10177–10179

    Article  Google Scholar 

  20. Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944–5945

    Article  Google Scholar 

  21. Tang L et al (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    Google Scholar 

  22. Dong Y et al (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743

    Google Scholar 

  23. Bottini M et al (2006) Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 110(2):831–836

    Google Scholar 

  24. Shen J et al (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47(9):2580–2582

    Google Scholar 

  25. Dong Y et al (2012) One-step and high yield simultaneous preparation of single-and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22(18):8764–8766

    Google Scholar 

  26. Peng J et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849

    Google Scholar 

  27. Jian X et al (2017) Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode. Electrochimica Acta 228:483–493

    Google Scholar 

  28. Jian X et al (2017) Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 114:533–543

    Google Scholar 

  29. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20(29):5983–5992

    Google Scholar 

  30. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327

    Article  Google Scholar 

  31. Seredych M, Bandosz TJ (2007) Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. Carbon (New York, NY) 45(10):2130–2132

    Google Scholar 

  32. Zhang K et al (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401

    Google Scholar 

  33. Shao Y et al (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44(11):3639–3665

    Google Scholar 

  34. Wang G et al (2012) Flexible pillared graphene‐paper electrodes for high‐performance electrochemical supercapacitors. Small 8(3):452–459

    Google Scholar 

  35. Yassine M, Fabris D (2017) Performance of commercially available supercapacitors. Energies 10(9):1340

    Article  Google Scholar 

  36. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280

    Article  Google Scholar 

  37. Zhi M et al (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Google Scholar 

  38. Kaur S, Ajayan PM, Kane RS (2006) Design and characterization of three-dimensional carbon nanotube foams. J Phys Chem B 110(42):21377–21380

    Article  Google Scholar 

  39. Yang Z et al (2019) Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

    Google Scholar 

  40. Nie J et al (2009) Very high-quality single-walled carbon nanotubes grown using a structured and tunable porous Fe/MgO catalyst. J Phys Chem C 113(47):20178–20183

    Google Scholar 

  41. Zhang Q et al (2008) Selective synthesis of single/double/multi-walled carbon nanotubes on MgO-supported Fe catalyst. Chin J Catal 29(11):1138–1144

    Google Scholar 

  42. Bressi V et al (2021) Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: recent advances and future perspectives. Nanomaterials 11(5):1120

    Google Scholar 

  43. Chahal S et al (2021) Green synthesis of carbon dots and their applications. RSC Adv 11(41):25354–25363

    Google Scholar 

  44. Goswami AD et al (2021) Sustainable and green synthesis of carbon nanomaterials: a review. J Environ Chem Eng 9(5):106118

    Google Scholar 

  45. Gan YX et al (2020) Hydrothermal synthesis of nanomaterials. J Nanomater 1–3

    Google Scholar 

  46. Grewal AS et al (2013) Microwave assisted synthesis: a green chemistry approach. Int Res J Pharm Appl Sci 3(5):278–285

    Google Scholar 

  47. Liu L et al (2019) Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Anal Methods 11(3):353–358

    Google Scholar 

  48. Gu D et al (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    Google Scholar 

  49. Maruyama T et al (2020) Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl Surf Sci 509:145340

    Google Scholar 

  50. Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam Relat Mater 50:135–150

    Google Scholar 

  51. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82

    Article  Google Scholar 

  52. Baker RTK, Waite RJ (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J Catal 37(1):101–105

    Article  Google Scholar 

  53. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758

    Article  Google Scholar 

  54. Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Google Scholar 

  55. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  Google Scholar 

  56. Ma H, Shen Z (2020) Exfoliation of graphene nanosheets in aqueous media. Ceram Int 46(14):21873–21887

    Article  Google Scholar 

  57. Chahal S, Yousefi N, Tufenkji N (2020) Green synthesis of high quantum yield carbon dots from phenylalanine and citric acid: role of stoichiometry and nitrogen doping. ACS Sustain Chem Eng 8(14):5566–5575

    Article  Google Scholar 

  58. Murugan N, Sundramoorthy AK (2018) Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe 3+ ions. New J Chem 42(16):13297–13307

    Google Scholar 

  59. Iravani S, Varma RS (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ Chem Lett 18:703–727

    Article  Google Scholar 

  60. Tyagi A et al (2016) Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv 6(76):72423–72432

    Google Scholar 

  61. Kartick B, Srivastava SK (2013) Green synthesis of graphene. J Nanosci Nanotechnol 13(6):4320–4324

    Article  Google Scholar 

  62. Wang J et al (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5(6):2411–2428

    Google Scholar 

  63. Li Z et al (2016) A sulfur host based on titanium monoxide@ carbon hollow spheres for advanced lithium–sulfur batteries. Nat Commun 7(1):13065

    Google Scholar 

  64. Wu Z‐Y et al (2013) Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie 125(10):2997–3001

    Google Scholar 

  65. Estevez L et al (2013) A facile approach for the synthesis of monolithic hierarchical porous carbons–high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ Sci 6(6):1785–1790

    Google Scholar 

  66. Cheng P et al (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086

    Google Scholar 

  67. Zhang W et al (2015) 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template‐free method. ChemSusChem 8(12):2114–2122

    Google Scholar 

  68. Falkowski P, Kiefer DA (1985) Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J Plankton Res 7(5):715–731

    Article  Google Scholar 

  69. Natarajan S, Divya ML, Aravindan V (2022) Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. J Energy Chem

    Google Scholar 

  70. Kwon S‐J et al (2019) Value‐added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Adv Sustain Syst 3(1):1800016

    Google Scholar 

  71. Schiavi PG et al (2021) Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor. J Energy Chem 58:336–344

    Google Scholar 

  72. Georgi-Maschler T et al (2012) Development of a recycling process for Li-ion batteries. J Power Sources 207:173–182

    Google Scholar 

  73. Ji Y et al (2021) Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technol Recycl 1(2):124–151

    Google Scholar 

  74. Thomas P, Lai CW, Bin Johan MR (2019) Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J Anal Appl Pyrolysis 140:54–85

    Google Scholar 

  75. Crini G et al (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213

    Google Scholar 

  76. Ahmed MB et al (2019) Activated carbon preparation from biomass feedstock: clean production and carbon dioxide adsorption. J Clean Prod 225:405–413

    Google Scholar 

  77. Samaddar P et al (2018) Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord Chem Rev 368:93–114

    Google Scholar 

  78. Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111

    Google Scholar 

  79. Hu C, Dai L (2019) Doping of carbon materials for metal-free electrocatalysis. Adv Mater 31(7):1804672

    Article  Google Scholar 

  80. Abbas Y et al (2021) Recent advances in bio-based carbon materials for anaerobic digestion: a review. Renew Sustain Energy Rev 135:110378

    Google Scholar 

  81. Bhatia D et al (2017) Biological methods for textile dye removal from wastewater: a review. Crital Rev Environ Sci Technol 47(19):1836–1876

    Google Scholar 

  82. Chigare R, Kamat S, Patil J (2019) A review of the automobile industries wastewater treatment methodologies. Int Res J Eng Technol 6(6):974–977

    Google Scholar 

  83. Verma R, Dwivedi P (2013) Heavy metal water pollution-a case study. Recent Res Sci Technol 5(5)

    Google Scholar 

  84. Mubarak NM et al (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43(4):311–338

    Article  Google Scholar 

  85. Duan C et al (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37:101339

    Google Scholar 

  86. Moosavi S et al (2020) Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5(33):20684–20697

    Google Scholar 

  87. Gomez V, Larrechi MS, Callao MP (2007) Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69(7):1151–1158

    Article  Google Scholar 

  88. Sun Y et al (2022) Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Rev Int 38(7):1513–1532

    Google Scholar 

  89. Yan K et al (2021) Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Adv 3(13):3708–3729

    Google Scholar 

  90. Wang X et al (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Google Scholar 

  91. El-Desoky HS et al (2010) Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent. J Hazard Mater 175(1–3):858–865

    Google Scholar 

  92. Ahmad A et al (2020) A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arab J Chem 13(12):8717–8722

    Google Scholar 

  93. Li P et al (2014) Air filtration in the free molecular flow regime: a review of high‐efficiency particulate air filters based on carbon nanotubes. Small 10(22):4543–4561

    Google Scholar 

  94. Lu T et al (2021) Multistructured electrospun nanofibers for air filtration: a review. ACS Appl Mater Interfaces 13(20):23293–23313

    Google Scholar 

  95. Hu J et al (2018) 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light. Small 14(19):1800416

    Google Scholar 

  96. Zhang X et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21(18):6494–6497

    Google Scholar 

  97. Wen X et al (2015) Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. SensS Actuators B: Chem 221:769–776

    Google Scholar 

  98. Yang X et al (2014) One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens Bioelectron 56:6–11

    Google Scholar 

  99. Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    Google Scholar 

  100. Chen J et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6(3):1879–1889

    Google Scholar 

  101. Sawangphruk M et al (2012) Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 50(14):5156–5161

    Google Scholar 

  102. Khan MS, Abdelhamid HN, Wu H-F (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids SurfS B: Biointerfaces 127:281–291

    Google Scholar 

  103. Modak A et al (2020) Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem 22(13):4002–4033

    Google Scholar 

  104. Acién Fernández FG et al (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586

    Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Mr. Deepak CP (I5PHY18021) and Mr. Dineesh R (I5PHY18024), integrated MSc physics students, Department of sciences, Amrita School of Physical Science, Amrita Vishwa Vidyapeetham, Coimbatore for their help in drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rajni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajni, K.S., Narayanan, V.V., Selvi, P. (2024). Environmental Applications of Carbon-Based Supercapacitors. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics