Skip to main content

Rare Causes of Scoliosis in Children: A Bird’s Eye View

  • Chapter
  • First Online:
Paediatric Scoliosis
  • 246 Accesses

Abstract

Osteogenesis imperfecta is a rare genetic connective tissue disorder. It is characterized by increased bone fragility, dentigerous imperfecta, and generalized ligamentous laxity. The incidence is one in 15,000 live births. The basic defect is in the formation of type 1 collagen. Children with OI have blue sclera, short stature, hearing impairment, and an increased tendency for fractures and deformities during childhood. The manifestations of these clinical features vary according to the type of disease. OI is divided into four types based on phenotypic severity: mild (Type I), moderate (Type IV), severe (Type III), and perinatally lethal (Type II) by Sillence (Table 1). Spine deformities are seen in more than 50% of cases of OI. Milder varieties have a dominant mutation in the COL1 A1 and COL1 A2 genes. Recessive varieties are severe. The diagnosis of OI is clinical although sometimes requires a skin biopsy, and DNA sequencing can help in classification [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallace MJ, Kruse RW, Shah SA. The spine in patients with osteogenesis imperfecta. J Am Acad Orthop Surg. 2017;25(2):100–9. https://doi.org/10.5435/jaaos-d-15-00169.

    Article  PubMed  Google Scholar 

  2. Renshaw TS, Cook RS, Albright JA. Scoliosis in osteogenesis imperfecta. Clin Orthop Relat Res. 1979;(145):163–167. https://doi.org/10.1097/00003086-197911000-00022.

  3. Anissipour AK, Hammerberg KW, Caudill A, Kostiuk T, Tarima S, Zhao HS, Krzak JJ, Smith PA. Behavior of scoliosis during growth in children with osteogenesis imperfecta. J Bone Joint Surg Am. 2014;96:237–43. https://doi.org/10.2106/jbjs.l.01596.

    Article  PubMed  Google Scholar 

  4. Widmann RF, Bitan FD, Laplaza FJ, Burke SW, DiMaio MF, Schneider R. Spinal deformity, pulmonary compromise, and quality of life in osteogenesis imperfecta. Spine (Phila Pa 1976). 1999;24(16):1673. https://doi.org/10.1097/00007632-199908150-00008.

    Article  CAS  PubMed  Google Scholar 

  5. O’Donnell C, Bloch N, Michael N, Erickson M, Garg S. Management of scoliosis in children with osteogenesis imperfecta. JBJS Rev. 2017;5(7):e8. https://doi.org/10.2106/jbjs.rvw.16.00063.

    Article  PubMed  Google Scholar 

  6. Karlin LI, McClung A, Johnston CE, et al. The growth-friendly surgical treatment of scoliosis in children with osteogenesis imperfecta using distraction-based instrumentation. Spine Deform. 2021;9(1):263–74. https://doi.org/10.1007/s43390-020-00196-0.

    Article  PubMed  Google Scholar 

  7. Piantoni L, Noel MA, Francheri Wilson IA, et al. Surgical treatment with pedicle screws of scoliosis associated with osteogenesis imperfecta in children. Spine Deform. 2017;5(5):360–5. https://doi.org/10.1016/j.jspd.2017.03.002.

    Article  PubMed  Google Scholar 

  8. Velisavljev-Filipovic G. Arthrogryposis multiplex congenita—a rare congenital stiff joints syndrome. Med Pregl. 2006;59(7–8):375–9. https://doi.org/10.2298/mpns0608375v.

    Article  PubMed  Google Scholar 

  9. Drummond DS, MacKenzie DA. Scoliosis in arthrogryposis multiplex congenita. Spine. 1978;3(2):146–51. https://doi.org/10.1097/00007632-197806000-00009.

    Article  CAS  PubMed  Google Scholar 

  10. Latypova X, Creadore SG, Dahan-Oliel N, et al. A genomic approach to delineating the occurrence of scoliosis in arthrogryposis multiplex congenita. Genes. 2021;12(7):1052. https://doi.org/10.3390/genes12071052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu L, Chen Z, Qiu Y, et al. Case-matched comparative analysis of spinal deformity correction in arthrogryposis multiplex congenita versus adolescent idiopathic scoliosis. J Neurosurg Pediatr. 2019;23(1):22–9. https://doi.org/10.3171/2018.7.peds18347.

    Article  Google Scholar 

  12. Yingsakmongkol W, Kumar SJ. Scoliosis in arthrogryposis multiplex congenita: results after nonsurgical and surgical treatment. J Pediatr Orthop. 2000;20:656–61. https://doi.org/10.1097/00004694-200009000-00021.

    Article  CAS  PubMed  Google Scholar 

  13. Yılmaz A, Acar HV, Tezer E, Demir G, Başar H. Anesthesia for scoliosis surgery in a patient with arthrogryposis multiplex congenita. J Clin Exp Invest. 2013;4(1):113–5. https://doi.org/10.5799/ahinjs.01.2013.01.0246.

    Article  Google Scholar 

  14. Komolkin I, Ulrich EV, Agranovich OE, van Bosse HJP. Treatment of scoliosis associated with arthrogryposis multiplex congenita. J Pediatr Orthop. 2017;37(Supplement 1):S24–6. https://doi.org/10.1097/bpo.0000000000000993.

    Article  PubMed  Google Scholar 

  15. Herron LD, Westin GW, Dawson EG. Scoliosis in arthrogryposis multiplex congenita. J Bone Joint Surg Am. 1978;60(3):293–9. https://doi.org/10.2106/00004623-197860030-00003.

    Article  CAS  PubMed  Google Scholar 

  16. Greggi T, Martikos K, Pipitone E, et al. Surgical treatment of scoliosis in a rare disease: arthrogryposis. Scoliosis. 2010;5(1):24. https://doi.org/10.1186/1748-7161-5-24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu L, Luan W, Wang Y, et al. Improvement of pulmonary function in arthrogryposis multiplex congenita patients undergoing posterior spinal fusion surgery for concomitant scoliosis: a minimum of 3-year follow-up. World Neurosurg. 2022;157:e424–31. https://doi.org/10.1016/j.wneu.2021.10.115.

    Article  PubMed  Google Scholar 

  18. Kirkland JD. Osteopetrosis—classic imaging findings in the spine. J Clin Diagn Res. 2015;9:TJ01. https://doi.org/10.7860/jcdr/2015/13334.6348.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Westerlund LE, Blanco JS, Chhabra A. Posterior spinal instrumentation and fusion of a neuromuscular scoliosis in a patient with autosomal dominant osteopetrosis. Spine (Phila Pa 1976). 2000;25(2):265. https://doi.org/10.1097/00007632-200001150-00020.

    Article  CAS  PubMed  Google Scholar 

  20. Amirfeyz R, Clark C, Gargan M. Spondyloepiphyseal dysplasia. Curr Orthop. 2005;19(4):309–13. https://doi.org/10.1016/j.cuor.2005.06.007.

    Article  Google Scholar 

  21. Morita M, Miyamoto K, Nishimoto H, Hosoe H, Shimizu K. Thoracolumbar kyphosing scoliosis associated with spondyloepiphyseal dysplasia congenita: a case report. Spine J. 2005;5(2):217–20. https://doi.org/10.1016/j.spinee.2004.08.002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Zacharia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zacharia, B. (2023). Rare Causes of Scoliosis in Children: A Bird’s Eye View. In: Zacharia, B., Raja, S.D.C., KV, N. (eds) Paediatric Scoliosis . Springer, Singapore. https://doi.org/10.1007/978-981-99-3017-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3017-3_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3016-6

  • Online ISBN: 978-981-99-3017-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics