Skip to main content

Geographically Weighted Sparse Group Lasso: Local and Global Variable Selections for GWR

  • Conference paper
  • First Online:
Intelligent Decision Technologies (KESIDT 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 352))

Included in the following conference series:

  • 173 Accesses

Abstract

This paper deals with the variable selection problem in geographically weighted regression (GWR). GWR is a local estimation method that continuously evaluates geographical effects in regression involving spatial data. Specifically, the method estimates regression coefficients for each observed point using a varying coefficient model. With such a model, variable selection has two aspects: local selection, which applies to each observed point, and global selection, which is common for all observed points. We approach both variable selections simultaneously via sparse group Lasso. To illustrate the proposed method, we apply it to apartment rent data in Tokyo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bivand, R., Yu, D.: spgwr: Geographically Weighted Regression (2022). https://CRAN.R-project.org/package=spgwr. R package version 0.6-35

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  3. Brunsdon, C., Fotheringham, S., Charlton, M.: Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996). https://doi.org/10.1111/j.1538-4632.1996.tb00936.x

    Article  Google Scholar 

  4. Craven, P., Wahba, G.: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979). https://doi.org/10.1007/BF01404567

    Article  MathSciNet  MATH  Google Scholar 

  5. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994). https://doi.org/10.1093/biomet/81.3.425

    Article  MathSciNet  MATH  Google Scholar 

  6. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist. 32, 407–499 (2004). https://doi.org/10.1214/009053604000000067

    Article  MathSciNet  MATH  Google Scholar 

  7. Fornasier, M., Rauhut, H.: Iterative thresholding algorithms. Appl. Comput. Harmon. Anal. 25(2), 187–208 (2008). https://doi.org/10.1016/j.acha.2007.10.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1, 302–332 (2007). https://doi.org/10.1214/07-AOAS131

    Article  MathSciNet  MATH  Google Scholar 

  9. Hurvich, C.M., Simonoff, J.S., Tsai, C.-L.: Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60, 271–293 (1998). https://doi.org/10.1111/1467-9868.00125

  10. Nishii, R., Bai, Z.D., Krishnaiah, P.R.: Strong consistency of the information criterion for model selection in multivariate analysis. Hiroshima Math. J. 18, 451–462 (1988). https://doi.org/10.32917/hmj/1206129611

  11. Ohishi, M., Okamura, K., Itoh, Y., Yanagihara, H.: Coordinate descent algorithm for generalized group fused Lasso. Technical report TR-No. 21–02, Hiroshima Statistical Research Group, Hiroshima (2021)

    Google Scholar 

  12. Ohishi, M., Yanagihara, H., Fujikoshi, Y.: A fast algorithm for optimizing ridge parameters in a generalized ridge regression by minimizing a model selection criterion. J. Statist. Plann. Inference 204, 187–205 (2020). https://doi.org/10.1016/j.jspi.2019.04.010

    Article  MathSciNet  MATH  Google Scholar 

  13. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). https://www.R-project.org/

  14. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group Lasso. J. Comput. Graph. Statist. 22, 231–245 (2013). https://doi.org/10.1080/10618600.2012.681250

  15. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat Methodol. 58, 267–288 (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  MATH  Google Scholar 

  16. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused Lasso. J. R. Stat. Soc. Ser. B Stat Methodol. 67, 91–108 (2005). https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  17. Tokyo Kantei Co., Ltd. https://www.kantei.ne.jp

  18. Wheeler, D.: Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted Lasso. Environ. Plann. A 41, 722–742 (2009). https://doi.org/10.1068/a40256

    Article  Google Scholar 

  19. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat Methodol. 68, 49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, L.C., Krishnaiah, P.R., Bai, Z.D.: On detection of the number of signals in presence of white noise. J. Multivar. Anal. 20, 1–25 (1986). https://doi.org/10.1016/0047-259X(86)90017-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006). https://doi.org/10.1198/016214506000000735

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 67, 301–320 (2005). https://doi.org/10.1111/j.1467-9868.2005.00503.x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Numbers JP20H04151 and JP21K13834. The authors thank the associate editor and the two reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineaki Ohishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohishi, M., Kirishima, K., Okamura, K., Itoh, Y., Yanagihara, H. (2023). Geographically Weighted Sparse Group Lasso: Local and Global Variable Selections for GWR. In: Czarnowski, I., Howlett, R., Jain, L.C. (eds) Intelligent Decision Technologies. KESIDT 2023. Smart Innovation, Systems and Technologies, vol 352. Springer, Singapore. https://doi.org/10.1007/978-981-99-2969-6_16

Download citation

Publish with us

Policies and ethics