Skip to main content

Nematode Management in Crops; Limitations and Challenges to Meet Future Food Demands

  • Chapter
  • First Online:
Novel Biological and Biotechnological Applications in Plant Nematode Management

Abstract

Plant feeding nematodes have the propensity to individually inflict severe damage or interact with other soil microbial organisms to form a disease complex situation and significant yield losses on many crops worldwide. While the kind of injury inflicted on the plant depends on the species of nematode, severity of infestation largely depends on their population density in the soil and other inherent plant factors which govern resistance or susceptibility to the invading nematode species. Therefore, most nematode management strategies are usually employed to reduce the population density of the pest below the damage potential threshold. Except for the underdeveloped nations of sub-Saharan Africa and some parts of Asia, nematode management worldwide witnessed a drastic change within the last decade. This change is largely attributed to the increased health and environmental concerns associated with heavy reliance on chemical pesticides in pest management. Present day nematode management options have progressed from the traditional total nematode eradication from the soil using nematicides and blunt crop rotation to a broader and more complex management programmes that can ensure sustainable nematode control by bringing down and keeping nematode pest population densities at levels where they can cause minimum damage to crops. This way, growers are able to attain the maximum potential yields from their crops at a reasonable cost. This chapter discusses the available nematode management options in crops with their limitations and challenges associated with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elgawad MM, Askary TH (2018) Fungal and bacterial nematicides in integrated nematode management strategies. Egypt J Biol Pest Control 28(1):1–24

    Article  Google Scholar 

  • Ahmed A, Munir S, He P, Li Y, He P, Yixin W, He Y (2020) Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 241:126565

    Article  CAS  PubMed  Google Scholar 

  • Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA (2017) Transgenic strategies for enhancement of nematode resistance in plants. Front Plant Sci 8:750

    Article  PubMed Central  Google Scholar 

  • Atef MK, Nassar B (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Article  Google Scholar 

  • Atolani O, Fabiyi OA (2020) Plant parasitic nematodes management through natural products: current progress and challenges. In: Ansari RA, Rizvi R, Mahmood I (eds) Management of phytonematodes: recent advances and future challenges. Springer, Singapore, pp 297–315

    Chapter  Google Scholar 

  • Atolani O, Fabiyi OA, Olatunji GA (2014a) Isovitexin from Kigelia pinnata, a potential eco-friendly nematicidal agent. Trop Agric 91(2):67–74. 0041-3216/2014/20067-08

    Google Scholar 

  • Atolani O, Fabiyi OA, Olatunji GA (2014b) Nematicidal isochromane glycoside from Kigelia pinnata leaves. Acta Agric Slov 104(1):25–31

    Google Scholar 

  • Bajaj HK, Kanwar RS (2015) Biology and predatory attributes of a diplogasterid nematode, Fictor composticola Khan et al., 2008. Helminthologia 52(1):50–57

    Article  Google Scholar 

  • Barbary A, Djian-Caporalino C, Palloix A, Castagnone-Sereno P (2015) Host genetic resistance to root-knot nematodes, Meloidogyne sp., in Solanaceae from genes to the field. Pest Manag Sci 71(12):1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Begum S, Zehra SQ, Siddiqui BS, Fayyaz S, Ramzan M (2008) Pentacyclic triterpenoids from the aerial parts of Lantana camara and their nematicidal activity. Chem Biodivers 5:1856–1866

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93:1–9. https://doi.org/10.1093/femsec/fix050

    Article  CAS  Google Scholar 

  • Bilgrami AL (2008) Biological control potentials of predatory nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Integrated management of plant pests and diseases, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6063-2_1

    Chapter  Google Scholar 

  • Bilgrami AL, Brey C (2005) Potential of predatory nematodes to control plant-parasiticnematodes. CABI, Wallingford, pp 447–464

    Google Scholar 

  • Bilgrami AL, Ahmad I, Shamim Jairajpuri M (1986) A study of the intestinal contents of some mononchs. Revue de nématologie 9(2):191–194

    Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34(1):201–225

    Article  CAS  PubMed  Google Scholar 

  • Brito JA, Stanley JD, Kaur R, Cetintas R, DiVito M, Thies JA, Dickson DW (2007) Effects of the Mi-1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper. J Nematol 39(4):327–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buena AP, Díez-Rojo MÁ, López-Pérez JA, Robertson L, Escuer M, Bello A (2008) Screening of Tagetes patula L. on different populations of Meloidogyne. Crop Prot 27(1):96–100

    Article  Google Scholar 

  • Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS, van Santen E, Kloepper JW (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 2008(47):55–59. https://doi.org/10.1016/j.biocontrol.2008.07.008

    Article  Google Scholar 

  • Caboni P, Ntalli NG, Aissani N, Cavoski I, Angioni A (2012) Nematicidal activity of (E, E)-2, 4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J Agric Food Chem 60(4):1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Candido V, d’Addabbo T, Basile M, Castronuovo D, Miccolis V (2008) Greenhouse soil solarization: effect on weeds, nematodes and yield of tomato and melon. Agro Sust Dev 28(2):221–230

    Article  Google Scholar 

  • Cassidy GH (1931) Some mononchs of Hawaii. Hawaii Planters’ Record 35:305–339

    Google Scholar 

  • Cesarz S, Ciobanu M, Wright AJ, Ebeling A, Vogel A, Weisser WW, Eisenhauer N (2017) Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations. Oecologia 184(3):715–728

    Article  Google Scholar 

  • Cetintas R, Yarba MM (2010) Nematicidal effects of five plant essential oils on the southern root-knot nematode, Meloidogyne incognita race 2. J Anim Vet Adv 9:222–225

    Article  Google Scholar 

  • Charlier JB, Cattan P, Voltz M, Moussa R (2009) Transport of a nematicide in surface and groundwaters in a tropical volcanic catchment. J Environ Qual 38(3):1031–1104

    Article  CAS  PubMed  Google Scholar 

  • Chellemi DO (2002) Nonchemical management of soilborne pests in fresh market vegetable production systems. Phytopathology 92(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Chitambar JJ, Noffsinger M (1989) Predaceous behaviour and life history of Odontopharynxlongicaudata (Diplogasterida). J Nematol 21:284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Ann Rev Phytopathol 40(1):221–249

    Article  CAS  Google Scholar 

  • Chuan QB, Zhi LL, Qi ZL (2011) Nematicidal constituents from the essential oil of Chenopodium ambrosioides aerial parts. E J Chem 8:143–114

    Article  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C et al (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108(4):765–773

    Article  CAS  PubMed  Google Scholar 

  • Cobb NA (1917) The Mononchus: a genus of free living predatory nematodes. Soil Sci 3(5):431–486

    Article  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot 30(10):1251–1262

    Article  Google Scholar 

  • D’Addabbo T, Migunova VD, Renčo M, Sasanelli N (2020) Suppressiveness of soil amendments with pelleted plant materials on the root-knot nematode Meloidogyne incognita. Helminthologia 57(4):376

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hose T, Molendijk L, Van Vooren L, van den Berg W, Hoek H, Runia W et al (2018) Responses of soil biota to non-inversion tillage and organic amendments: an analysis on European multiyear field experiments. Pedobiologia 66:18–28

    Article  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bio Med Chem 17(12):4022–4034

    Article  CAS  Google Scholar 

  • Dehghanian SZ, Abdollahi M, Charehgani H, Niazi A (2020) Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato. Biol Control 141:104134. https://doi.org/10.1016/j.biocontrol.2019.104134

    Article  CAS  Google Scholar 

  • Devi G, George J (2018) Predatory nematodes as bio-control agent against plant-parasitic nematode—a review. Agric Rev 39(1):55–61

    Google Scholar 

  • Di Vito M, Catalano F, Pecchia P, Cammareri M, Conicella C (2010) Effects of meal and saponins of Aster caucasicus and of A. sedifolius on the control of nematodes. Acta Hortic 883:361–368

    Article  Google Scholar 

  • Djian-Caporalino C, Molinari S, Palloix A, Ciancio A, Fazari A, Marteu M, Ris N, Castagnone-Sereno P (2011) The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Euro J Plant Pathol 131:431–440. https://doi.org/10.1007/s10658-011-9820-4

    Article  Google Scholar 

  • Dos Santos KR, Carlos BC, Paduan KS, Kadri SM, Barrella TH, Amarante MRV et al (2010) Morphological and molecular characterization of Strongyloides ophidiae (Nematoda, Strongyloididae). J Helminthol 84(2):136–142

    Article  CAS  PubMed  Google Scholar 

  • Duncan LW (1991) Current options for nematode management. Annu Rev Phytopathol 29(1):469–490

    Article  CAS  PubMed  Google Scholar 

  • Duschatzky CB, Martinez AN, Almeida NV, Bonivardo SL (2004) Nematicidal activity of the essential oils of several Argentina plants against the root-knot nematode. J Essent Oil Res 16(6):626–628

    Article  CAS  Google Scholar 

  • Edelson JV, Duthie J, Roberts W (2002) Toxicity of biorational insecticides: activity against the green peach aphid, Myzus persicae(Sulzer). Pest Mgt Sci 58(3):255–260

    Article  CAS  Google Scholar 

  • El Allagui N, Tahrouch S, Bourijate M, Hatimi A (2007) Action of plant extracts on root-knot nematods (Meloidogyne spp.) mortality. Acta Bot Gallica 154:503–509

    Article  Google Scholar 

  • El-Eslamboly AASA, Abd El-Wanis MM, Amin AW (2019) Algal application as a biological control method of rootknot nematode Meloidogyne incognita on cucumber under protected culture conditions and its impact on yield and fruit quality. Egypt J Biol Pest Control 29:18. https://doi.org/10.1186/s41938-019-0122-z

    Article  Google Scholar 

  • El-Moneim DA, Dawood MFA, Moursi YS et al (2021) Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol Environ Eng 6:21. https://doi.org/10.1007/s41204-021-00117-0

    Article  CAS  Google Scholar 

  • El-Saadony MT, Abuljadayel DA, Shafi ME, Albaqami NM, Desoky ESM, El-Tahan AM et al (2021) Control of foliar phytoparasitic nematodes through sustainable natural materials: current progress and challenges. Saudi J Biol Sci 28(12):7314–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabiyi OA (2019) Management of groundnut (Arachis hypogea) root-knot nematode (Meloidogyne incognita): effect of Prosopis africana pods. Indian J Nematol 49(2):214–216

    Google Scholar 

  • Fabiyi OA (2020) Growth and yield response of groundnut Arachis hypogaea (Linn.) under Meloidogyne incognita infection to furfural synthesized from agro-cellulosic materials. J Trop Agric 58(2):241–245

    Google Scholar 

  • Fabiyi OA (2021a) Evaluation of plant materials as root-knot nematode (Meloidogyne incognita) suppressant in okro (Abelmuscous esculentus). Agric Conspec Sci 86(1):51–56

    Google Scholar 

  • Fabiyi OA (2021b) Evaluation of nematicidal activity of Terminalia glaucescens fractions against Meloidogyne incognita on Capsicum chinense. J Hortic Res 29(1):67–74. https://doi.org/10.2478/johr-2021-0006

    Article  CAS  Google Scholar 

  • Fabiyi OA (2021c) Application of furfural in sugarcane nematode pest management. Pak J Nematol 39(2):151–155. https://doi.org/10.17582/journal.PJN/2021.39.2.151.155

    Article  Google Scholar 

  • Fabiyi OA (2021d) Sustainable management of Meloidogyne incognita infecting carrot: green synthesis of silver nanoparticles with Cnidoscolus aconitifolius: (Daucus carota). Vegetos 34(2):277–285

    Article  Google Scholar 

  • Fabiyi OA (2022a) Application of municipal refuse dump site soil, orange, potato and pineapple peels in the control of root knot nematode (Meloidogyne incognita) infecting carrots (Daucus carota L.). J Solid Waste Manag 48(3):474–485

    Article  CAS  Google Scholar 

  • Fabiyi OA (2022b) Fractions from Mangifera indica as an alternative in Meloidogyne incognita management. Pak J Nematol 40(1):65–74

    Article  Google Scholar 

  • Fabiyi OA (2022c) Cytotoxicity and nematicidal potential of leaf extracts of Adansonia digitata and Khaya senegalensis on root knot nematode (Meloidogyne incognita) associated with cabbage (Brassica oleracea). J Agric Sci Sri Lanka 17(3):425–436

    Google Scholar 

  • Fabiyi OA (2022d) Evaluation of weeds against root-knot nematode (Meloidogyne incognita) in vegetables. Sarhad J Agric 38(4):1289–1299

    Google Scholar 

  • Fabiyi OA, Olatunji GA (2018) Application of green synthesis in nanoparticles preparation: Ficus mucoso extracts in the management of Meloidogyne incognita parasitizing groundnut Arachis hypogea. Indian J Nematol 48(1):13–17

    Google Scholar 

  • Fabiyi OA, Olatunji GA (2021a) Environmental sustainability: bioactivity of Leucaena leucocephala leaves and pesticide residue analysis in tomato fruits. Acta Univ Agric Silvic Mendelianae Brun 69(4):473–480

    Article  CAS  Google Scholar 

  • Fabiyi OA, Olatunji GA (2021b) Toxicity of derivatized citrulline and extracts of water melon rind (Citrullus lanatus) on root-knot nematode (Meloidogyne incognita). Trop Agric 98(4):347–355

    Google Scholar 

  • Fabiyi OA, Atolani O, Olatunji GA (2012a) Nematicidal activity of Alstonia boonei and Bridelia ferruginea leaves. Albanian J Agric Sci 11(2):105–114

    Google Scholar 

  • Fabiyi OA, Olatunji GA, Atolani O (2012b) Nematicidal activities of chromatographic fraction from Alstonia boonei and Bridelia ferruginea on Meloidogyne incognita. Pak J Nematol 30(2):189–198

    Google Scholar 

  • Fabiyi OA, Atolani O, Adeyemi OS, Olatunji GA (2012c) Antioxidant and cytotoxicity of β-Amyrin acetate fraction from Bridellia ferruginea leaves. J Trop Biomed 2:S981–S984

    Article  Google Scholar 

  • Fabiyi OA, Osunlola OS, Olatunji GA (2015) In-vitro toxicity of essential oils from Hyptis suaveolens (L.) Poit on eggs and second-stage juvenile of Heterodera sacchari. Agrosearch 15(1):89–99

    Article  Google Scholar 

  • Fabiyi OA, Olatunji GA, Olagbenro MO (2016) Response of the root-knot nematode-infected Celosia argentea to bark extracts of Khaya ivorensis. Ife J Agric 28(2):24–36

    Google Scholar 

  • Fabiyi OA, Olatunji GA, Osunlola OS, Umar KA (2018a) Efficacy of agricultural wastes in the control of rice cyst nematode (Heterodera sacchari). Agric Conspec Sci 83(4):329–334

    Google Scholar 

  • Fabiyi OA, Olatunji GA, Saadu AO (2018b) Suppression of Heterodera sacchari in rice with agricultural waste-silver nano particles. J Solid Waste Manag 44(2):87–91

    Article  CAS  Google Scholar 

  • Fabiyi OA, Olatunji GA, Adebayo MO, Atolani O (2018c) Effect of thermal degraded products of Cymbopogon citratus on the in vitro survival of Meloidogyne incognita eggs and juveniles. Ceylon J Sci 47(3):235–239

    Article  Google Scholar 

  • Fabiyi OA, Olatunji GA, Daodu IO (2019) Nematicidal effect of organic extract metal complex on Meloidogyne incognita infecting groundnuts (Arachis hypogea). Sci Agric Bohem 50(3):191–196

    Google Scholar 

  • Fabiyi OA, Olatunji GA, Atolani O, Olawuyi RO (2020a) Preparation of bio-nematicidal nanoparticles of Eucalyptus officinalis for the control of cyst nematode (Heterodera sacchari). J Anim Plant Sci 30(5):1172–1177

    CAS  Google Scholar 

  • Fabiyi OA, Atolani O, Olatunji GA (2020b) Toxicity effect of Eucalyptus globulus on Pratylenchus spp of Zea mays. Sarhad J Agric 36(4):1244–1253

    Google Scholar 

  • Fabiyi OA, Alabi RO, Ansari RA (2020c) Nanoparticles’ synthesis and their application in the management of phytonematodes: an overview. In: Ansari RA, Rizvi R, Mahmood I (eds) Management of phytonematodes: recent advances and future challenges. Springer, Singapore, pp 125–140

    Chapter  Google Scholar 

  • Fabiyi OA, Claudius-Cole AO, Olatunji GA, Abubakar DO, Adejumo OA (2021) Evaluation of the in vitro response of Meloidogyne incognita to silver nano particle liquid from agricultural wastes. Agrivita J Agric Sci 43(3):524–534

    Google Scholar 

  • Faizi S, Fayyaz S, Bano S, Yawar Iqbal E, Siddiqi H, Naz A (2011) Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure–activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. J Agric Food Chem 59(17):9080–9093

    Article  CAS  PubMed  Google Scholar 

  • Flint ML (2012) IPM in practice: principles and methods of integrated pest management, vol 3418. University of California Agriculture and Natural Resources

    Google Scholar 

  • Forghani F, Hajihassani A (2020) Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front Plant Sci 11:1125

    Article  PubMed  PubMed Central  Google Scholar 

  • Fouda MM, Abdelsalam NR, Gohar IMA, Hanfy AE, Othman SI, Zaitoun AF et al (2020) Utilization of High throughput microcrystalline cellulose decorated silver nanoparticles as an econematicide on root-knot nematodes. Colloids Surf B 188:110805

    Article  CAS  Google Scholar 

  • Fourie H, De Waele D (2019) Integrated pest management (IPM) of nematodes. In: Integrated management of insect pests: current and future developments. Burleigh Dodds Science Publishing, pp 771–840

    Chapter  Google Scholar 

  • Gamalero E, Glick BG (2020) The use of plant growth-promoting bacteria to prevent nematode damage to plants. Biology 9:381. https://doi.org/10.3390/biology9110381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:1–8

    Article  Google Scholar 

  • Goswami P, Yadav S, Mathur J (2019) Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci Today 6(2):232–242. https://doi.org/10.14719/pst.2019.6.2.502

    Article  CAS  Google Scholar 

  • Grubišić D, Uroić G, Ivošević A, Grdiša M (2018) Nematode control by the use of antagonistic plants. Agric Conspec Sci 83(4):269–275

    Google Scholar 

  • Haque Z, Khan MR (2021) Hand book of invasive plant-parasitic nematodes. CABI, London, p 544

    Book  Google Scholar 

  • Hokkanen HM (1991) Trap cropping in pest management. Annu Rev Entomol 36(1):119–138

    Article  Google Scholar 

  • Jairajpuri MS, Bilgrami AL (1990) Predatory nematodes. In: Jairajpuri MS, Alam MM, Ahmad I (eds) Nematode bio-control: aspects and prospects. CBS Publishers and Distributors Pvt., Ltd, New Delhi, pp 95–125

    Google Scholar 

  • Jindapunnapat K, Reetz ND, MacDonald MH, Bhagavathy G, Chinnasri B, Soonthornchareonnon N et al (2018) Activity of Vetiver Extracts and Essential Oil against. J. Nematol 50(2):147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RK (2017) Nematode control and nematicides: developments since 1982 and future trends. In: Nematology in South Africa: a view from the 21st century. Springer, Cham, pp 129–150

    Chapter  Google Scholar 

  • Kamunya SM, Wachira FN, Lang’at J, Otieno W, Sudoi V (2008) Integrated management of root knot nematode (Meloidogyne spp.) in tea (Camellia sinensis) in Kenya. Int J Pest Mgt 54(2):129–136

    Article  CAS  Google Scholar 

  • Karssen G, Wesemael WML, Moens M (2013) Root-knot nematodes. In: Perry RN, Moens M (eds) Plant nematology. Wallingford, UK, CAB International, pp 73–108

    Chapter  Google Scholar 

  • Katan J, Greenberger A, Alon H, Grinstein A (1976) Solar heating by polyethylene mulching for the control of diseases caused by soil borne pathogens. Phytopathology 66:683–688

    Article  Google Scholar 

  • Khabbaz SE, Ladhalakshmi D, Babu M, Kandan A, Ramamoorthy V, Saravanakumar D, Al-Mughrabi T, Kandasamy S (2019) Plant growth promoting bacteria (PGPB)—a versatile tool for plant health management. Can J Pestic Pest Manag 1:1–25. https://doi.org/10.34195/can.j.ppm.2019.05.001

    Article  Google Scholar 

  • Khan MR (2001) Use of fly ash for the cultivation of ornamental plants for domestic purpose. In: Proceedings RAWM-2001. Indian Association for Environmental Management, pp 85–89

    Google Scholar 

  • Khan MR (2005) Biological control of fusarial wilt and root knot of legumes. DBT, Ministry of Science & Technology, India, p 61

    Google Scholar 

  • Khan MR (2007) Prospects of microbial control of root-knot nematodes infecting vegetable crops. In: Sharma N, Singh HB (eds) Biotechnology: plant heatlh management. International Book Distributing, Co., pp 643–665

    Google Scholar 

  • Khan MR (2008) Plant nematodes: methodology, morphology, systematics, biology and ecology, 1st edn. CRC Press, p 378. https://doi.org/10.1201/9780367803582

    Book  Google Scholar 

  • Khan MR (2016) Nematode biocontrol agents: diversity and effectiveness against phytonematodes in sustainable crop protection. Indian Phytopathol 69(4s):453–463

    Google Scholar 

  • Khan MR (2023) Plant nematodes, hidden constraints in the global crop production. In: Khan MR, Quintanilla M (eds) Nematode diseases of crops and their sustainable management. Elsevier, pp 3–23

    Chapter  Google Scholar 

  • Khan MR, Akram M (2020) Nanoparticles and their fate in soil ecosystem. In: Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore, pp 221–245

    Chapter  Google Scholar 

  • Khan MR, Khan MW (2000) Sulphur dioxide effects on plants and pathogens. Environmental Hazards, Plant and People, pp 118–136

    Google Scholar 

  • Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35(2):370–379

    Article  Google Scholar 

  • Khan MR, Singh SK, Khan MW (1988) Response of lentil to cobalt as a soil pollutant. In: Annals of applied biology, pp 104–105

    Google Scholar 

  • Khan MR, Khan MW, Singh K (1996) Effects of nickel and root-knot nematode on the growth and protein content of chickpea. Nematol Mediterr 24:87–90

    Google Scholar 

  • Khan MR, Altaf S, Mohiddin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers, Inc., New York, pp 395–426

    Google Scholar 

  • Khan MR, Ashraf S, Shahid S, Anwer MA (2010a) Response of some chickpea cultivars to foliar, seed and soil inoculations with Botrytis cinerea. Phytopathol Mediterr 49(3):275–286

    Google Scholar 

  • Khan MR, Mehboob A, Khan U (2010b) Interaction of the entomopathogenic nematode Steinernema masoodi and the rootknot nematode Meloidogyne incognita on tomato. Nematol Mediterr

    Google Scholar 

  • Khan MR, Haque Z, Kausar N (2014) Management of the root-knot nematode Meloidogyne graminicola infesting rice in the nursery and crop field by integrating seed priming and soil application treatments of pesticides. Crop Prot 63:15–25. https://doi.org/10.1016/j.cropro

    Article  CAS  Google Scholar 

  • Khan MR, Rizvi TF, Ahamad F (2019a) Application of nanomaterials in plant disease diagnosis and management. Nanobiotechnol Appl Plant Protect 2:19–33

    Article  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C (2019b) Nanoparticle–plant interactions: two-way traffic. Small 15(37):1901794

    Article  Google Scholar 

  • Khan MR, Fromm KM, Rizvi TF, Giese B, Ahamad F, Turner RJ, Füeg M, Marsili E (2020) Metal nanoparticle-microbe interactions: synthesis and antimicrobial effects. In: Particle and particle systems characterization, USA. https://doi.org/10.1002/ppsc.201900419

  • Khan MR, Ahamad I, Shah H (2021) Emerging important nematode problems in field crops and their management. In: Singh KP, Jahagirdar S, Sarma BK (eds) Emerging trends in plant pathology. Springer Nature, pp 33–62

    Chapter  Google Scholar 

  • Kim YH (2015) 17 Predatory nematodes as biocontrol agents of phytonematodes. Biocontrol agents of phytonematodes, p 393

    Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Combining residues of herb crops with soil heating for control of soilborne pathogens in a controlled laboratory system. Crop Prot 30(3):368–374

    Article  Google Scholar 

  • Larney FJ, Angers DA (2012) The role of organic amendments in soil reclamation: A review. Can J Soil Sci 92(1):19–38

    Article  CAS  Google Scholar 

  • Lazzeri L, Curto G, Dallavalle E, D’Avino L, Malaguti L, Santi R, Patalano G (2009) Nematicidal efficacy of biofumigation by defatted brassicaceae meal for control of Meloidogyne incognita (Kofoid et White) Chitw. on a full field zucchini crop. J Sust Agr 33:349–358

    Article  Google Scholar 

  • Leonetti P, D’Addabbo T, Avato P, Tava A (2011) Control of root-knot nematodes with biomasses from alfalfa (Medicago sativa L.) and their bioactive saponins. Acta Hortic 914:225–228

    Article  Google Scholar 

  • Liu M, Chen X, Qin J, Wang D, Griffiths B, Hu F (2008) A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Appl Soil Ecol 40(2):250–259

    Article  Google Scholar 

  • Lynn OM, Song WG, Shim JK, Kim JE, Lee KY (2010) Effects of azadirachtin and neem-based formulations for the control of sweet potato whitefly and root-knot nematode. J Korean Soc Appl Biol Chem 53(5):598–604

    Article  CAS  Google Scholar 

  • Maggie EMH, Hanaa S, Zawam SE, El-Nahas M, Abeer FD (2016) Comparison study between silver nanoparticles and two Nematicides against Meloidogyne incognita on tomato seedlings. Plant Pathol J 15:144–151

    Article  Google Scholar 

  • Mandic-Mulec I, Stefanic P, van Elsas JD (2015) Ecology of Bacillaceae. Microbiol Spectr 3:1. https://doi.org/10.1128/microbiolspec.TBS-0017-2013

    Article  CAS  Google Scholar 

  • Marahatta SP, Wang KH, Sipes BS, Hooks CRR (2010) Strip-tilled cover cropping for managing nematodes, soil mesoarthropods, and weeds in a bitter melon agroecosystem. J Nematol 42:111–119

    PubMed  PubMed Central  Google Scholar 

  • Mashela PW, De Waele D, Dube Z, Khosa MC, Pofu KM, Tefu G, Daneel MS, Fourie H (2017) Alternative nematode management strategies. In: Fourie H, Spaull VW, Jones RK, Daneel MS, De Waele D (eds) Nematology in South Africa: a view from the 21st Century. Springer, Cham, Switzerland, pp 151–181

    Chapter  Google Scholar 

  • Migunova VD, Sasanelli N (2021) Bacteria as biocontrol tool against phytoparasitic nematodes. Plants 10(2):389

    Article  PubMed Central  Google Scholar 

  • Mishra RK, Jaiswal RK, Kumar D, Saabale PR, Singh A (2014) Management of major diseases and insect pests of onion and garlic: A comprehensive review. J Plant Breed Crop Sci 6(11):160–170

    Article  Google Scholar 

  • Moens M, Perry RN, Starr JL (2009) Meloidogyne species—a diverse group of novel and important plant parasites. Root-Knot Nematodes 1:483

    Google Scholar 

  • Mohiddin FA, Khan MR (2013) Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. Afr J Agric 8(43):5272–5275

    Google Scholar 

  • Mohiddin FA, Khan MR (2014) Root-knot nematode: ignored soil borne plant pathogen causing root diseases of chickpea. Eur J Biotech Biosci 2(1):04–10

    Google Scholar 

  • Neves WS, de Freitas LG, Coutinho MM, Dallemole-Giaretta R, Fabry CFS, Dhingra OD, Ferraz S (2009) Nematicidal activity of extracts of red hot chilli pepper, mustard and garlic on Meloidogyne javanica in green house. Summa Phytopathol 35:255–261

    Article  Google Scholar 

  • Noel GR (2008) IPM of soybean cyst nematode in the USA. In: Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 119–126

    Chapter  Google Scholar 

  • Ntalli NG, Ferrari F, Giannakou I, Menkissoglu‐Spiroudi U (2011) Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag Sci 67(3):341–351

    Article  CAS  PubMed  Google Scholar 

  • Ntalli N, Monokrousos N, Rumbos C, Kontea D, Zioga D, Argyropoulou MD et al (2018) Greenhouse biofumigation with Melia azedarach controls Meloidogyne spp. and enhances soil biological activity. J Pest Sci 91:29–40

    Article  Google Scholar 

  • Nyczepir AP, Thomas SH (2009) 18 Current and future management strategies in intensive crop production systems. Root-Knot Nematodes 412

    Google Scholar 

  • Nzeako S, Yessoufou K, van der Bank, M, Imafidor H (2013) Testing impacts of endoparasitic nematode Meloidogyne javanica on crop productivity, using tomato cultivar “Gboko” as a case study in Nigeria. Int J Plant Breed Crop Sci Res 1(1):1–9

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments: a review. Appl Soil Ecol 4:101–115

    Article  Google Scholar 

  • Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90(7):710–715

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Niwa S, Takemoto S, Komatsuzaki M, Hiroki M (2011) How different or similar are nematode communities between a paddy and an upland rice fields across a flooding–drainage cycle? Soil Biol Biochem 43(10):2142–2151

    CAS  Google Scholar 

  • Onkendi EM, Kariuki GM, Marais M, Moleleki LN (2014) The threat of root knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathol 63:727–737

    Article  Google Scholar 

  • Ornat C, Verdejo-Lucas S, Sorribas F (2001) A population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Dis 85(3):271–276

    Article  CAS  PubMed  Google Scholar 

  • Pandey R (2000) Additive effect of three organic materials and nematicides on the reproduction of Meloidogyne incognita and yield of Mentha arvensis. Nematropica 30:155–160

    Google Scholar 

  • Peiris PUS, Li Y, Brown P, Xu C (2020) Fungal biocontrol against Meloidogyne spp. in agricultural crops: a systematic review and meta-analysis. Biol Control 144:104235

    Article  CAS  Google Scholar 

  • Pérez MP, Navas‐Cortés JA, Pascual‐Villalobos MJ, Castillo P (2003) Nematicidal activity of essential oils and organic amendments from Asteraceae against root‐knot nematodes. Plant Pathol 52(3):395–401

    Article  Google Scholar 

  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bio-products of microbial origin. Appl Soil Ecol 56:58–62

    Article  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240. https://doi.org/10.1016/j.biocontrol.2020.104240

    Article  CAS  Google Scholar 

  • Regmi H, Desaeger J (2020) Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Prot 134:105170

    Article  CAS  Google Scholar 

  • Renčo M (2013) Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 50:3–14

    Article  Google Scholar 

  • Rosskopf E, Di Gioia F, Hong JC, Pisani C, Kokalis-Burelle N (2020) Organic amendments for pathogen and nematode control. Annu Rev Phytopathol 58:277–311

    Article  CAS  PubMed  Google Scholar 

  • Shahid S, Khan MR (2019) Evaluation of biocontrol agents for the management of root-rot of mung bean caused by Macrophomina phaseolina. Indian Phytopathol 72:89–98

    Article  Google Scholar 

  • Shahid S, Khan MR (2016) Management of root-rot of mungbean caused by Macrophomina phaseolina through seed treatment with fungicides. Indian Phytopathol 69(2):128–136

    Google Scholar 

  • Shazaukat SS, Siddiqui IA, Ali NI, Ali SA, Khan GH (2009) Nematicidal and allelopathic responses of Lantana camara root extract. Phytopathol Mediterr 42:71–78

    Google Scholar 

  • Siddiqui MA (2003) Relative efficacy of different cropping sequences integrated with ploughing for the management of plant parasitic nematodes. Arch Phytopathol Pflanzenschutz 36(3–4):151–159

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58(3):229–239

    Article  CAS  Google Scholar 

  • Sidhu HS (2019) Biological control of root-knot nematode (Meloidogyne incognita) with predatory nematode, Fictor Composticola on cucumber [with CD copy]. Doctoral dissertation, Nematology, CCSHAU, Hisar

    Google Scholar 

  • Smith RF, Reynolds HT 1966 Principles definitions and scope of integrated pest management control, In Proceedings of the FAO symposium on integrated pest control, 11–15 October, 1965, Rome. Food and agriculture organization of the United Nations

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Attri BL, Pandey H (2006) Indigenous wisdom for the use of Giant weed in disease and pest management. Indian J Tradit Knowl 5(1):83–86

    Google Scholar 

  • Thies JA (2021) Grafting for managing vegetable crop pests. Pest Manag Sci 77(11):4825–4835

    Article  CAS  PubMed  Google Scholar 

  • Thies JA, Dickson DW, Fery RL (2008) Stability of resistance to root-knot nematodes in ‘Charlston Belle’ an ‘Carolina Wonder’ bell pepper in a sub-tropical environment. Hort Sci 43:188–189

    Google Scholar 

  • Thoden TC, Hallmann J, Boppré M (2009) Effects of plants containing pyrrolizidine alkaloids on the northern root-knot nematode Meloidogyne hapla. Eur J Plant Pathol 123:27–36

    Article  CAS  Google Scholar 

  • Thoden TC, Korthals GW, Termorshuizen AJ (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management. Nematology 13:133–153

    Article  Google Scholar 

  • Thomas C, Cottage A (2006) Genetic engineering for resistance. In: Perry RN, Moens M (eds) Plant nematology. CABI, King’s Lynn, pp 255–272

    Chapter  Google Scholar 

  • Van Biljon E, McDonald A, Fourie H (2015) Population responses of plant-parasitic nematodes in selected crop rotations over five seasons in organic cotton production. Nematropica 45(1):102–112

    Google Scholar 

  • Védie H, Mateille T, Tavoillot J (2014) Soil solarization and crop rotation to manage root-knot nematodes in organic green houses. Acta. Hortic 1041:87–94

    Article  Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates–A review. LWTFood Technol 42(10):1561–1572

    CAS  Google Scholar 

  • Walker JT, Melin JB (1996) Mentha piperita, Mentha spicata and effects of their essential oils on Meloidogyne in soils. J Nematol 28:629–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westerdahl BB (2009) Cultural methods for managing nematodes on vegetables and ornamentals. In I All Africa horticultural congress 911 (pp 185–198)

    Google Scholar 

  • Westerdahl BB (2018, September) Evaluation of trap cropping for management of root-knot nematode on annual crops. In IX International symposium on soil and substrate disinfestation 1270 (pp 141–146)

    Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22(7):396–403

    Article  CAS  PubMed  Google Scholar 

  • Xiang N, Lawrence KS, Donald PA (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: a review. J Phytopathol 66:449–458. https://doi.org/10.1111/jph.12712

    Article  Google Scholar 

  • Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW (2010) Managing nematodes without methyl bromide. Annu Rev Phytopathol 48:311–328

    Article  CAS  PubMed  Google Scholar 

  • Zasada IA, Meyer SLF, Morra MJ (2009) Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloidogyne incognita. J Nematol 41(3):221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Zhao H, Zhao D, Zhu X, Wang Y, Duan Y et al (2018) Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol Control 119:12–19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabiyi, O.A., Bello, T.T. (2023). Nematode Management in Crops; Limitations and Challenges to Meet Future Food Demands. In: Khan, M.R. (eds) Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-2893-4_2

Download citation

Publish with us

Policies and ethics