Skip to main content

Novel Nanomaterials and Nanoformulations for Nematode Management in Agricultural Crops

  • Chapter
  • First Online:
Novel Biological and Biotechnological Applications in Plant Nematode Management

Abstract

Economic and sustainable management of pests and diseases is one of the most challenging tasks in the crop production sector. Nematodes with diversified parasitism are considered as an important pest all over the world, causing significant damage to agricultural crops, and reduce their yield valuing over $175 to 200 billion world over. Farmers use different chemicals, but generally the nematode attack remains significantly uncontrolled. The chemical nematicides create serious issues of human and the environmental toxicity. In view of increasing demand of food and lesser effectiveness of existing methodologies, innovative technologies and materials are needed to be evolved for the management of pest and disease issues including those created by plant nematodes. Nanotechnology is one of the most promising and innovative technologies emerged in recent years, and has great potential for application in agriculture, particularly for pest management. The nanomaterials work as inhibitors against soil populations of nematodes. One significant use of nanotechnology is the synthesis of nematicidal nanocompounds, which penetrate the root system and prevent nematodes from feeding or establishing on the host. Nanomaterials can penetrate the body of nematodes, causing nematodes to die within a short period of time. Similarly, nanofertilizers are available, which are absorbed by plants more quickly than conventional fertilizers. An other application of nanotechnology is the development of nanosensors that can precisely detect nematode populations in the soil or plant tissue. The present chapter offers important information on nanomaterials and nanoformulations that can be used to protect plants from nematode invasion or to detect them in the plant or soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdellatif KF, Abdelfattah RH, El-Ansary MSM (2016) Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J Biotechnol 14(4):250–259. https://doi.org/10.15171/ijb.1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Al Banna L, Salem N, Ghrair AM, Habash SS (2018) Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. Appl Ecol Environ Res 16(3):2651–2662

    Article  Google Scholar 

  • Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 15(6):671–677. https://doi.org/10.1163/15685411-00002710

    Article  CAS  Google Scholar 

  • Behravan M, Hossein Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  PubMed  Google Scholar 

  • Bond GC (2005) Metal-catalysed reactions of hydrocarbons. Springer, New York, NY

    Google Scholar 

  • Carriere M, Sauvaigo S, Douki T, Ravanat JL (2017) Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis 32(1):203–213

    Article  CAS  Google Scholar 

  • Ch G, Ntalli N, Menkissoglu-Spiroudi U, Dendrinou-Samara C (2019) Essential metal-based nanoparticles (copper/iron NPs) as potent nematicidal agents against Meloidogyne spp. J Nanotechnol Res 1:43–57

    Article  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species-related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588. https://doi.org/10.1021/es703238h

    Article  CAS  PubMed  Google Scholar 

  • Choudhary P, Singh V, Goswami S, Chakdar H (2018) Plant disease diagnostics at nanoscale. In: International conference on agricultural, allied sciences and biotech for sustainability of agriculture, nutrition and food security, pp 365–372

    Google Scholar 

  • Cortie MB (2004) The weird world of nanoscale gold. Gold Bull 37(1–2):12–19

    Article  CAS  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in Bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darago A (2014) The distribution of dagger nematodes species in Hungarian wind regions and newest control options [PhD thesis]. Keszthely, Hungary: Universidad Pannonia Georgikon

    Google Scholar 

  • El-Batal AI, Attia MS, Nofel MM, El-Sayyad GS (2019) Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J Clust Sci 30:687–705

    Article  CAS  Google Scholar 

  • El-Deen AHN, El-Deeb BA (2018) Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. J Agric Sci 10:148–156

    Google Scholar 

  • Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C et al (2018) Effect of metalloid and metal oxide nanoparticles on fusarium wilt of watermelon. Plant Dis 102(7):1394–1401. https://doi.org/10.1094/PDIS-10-17-1621-RE

    Article  CAS  PubMed  Google Scholar 

  • Fabiyi OA, Olatunji GA (2018) Application of green synthesis in nano particles preparation: Ficus mucosa extracts in the management of Meloidogyne incognita infecting groundnut Arachis hypogea. Indian J Nematol 48(1):13–17

    Google Scholar 

  • Flifl AA, Singh RM (2021) Antimicrobial activity and mode of action of aspergillus terreus strain (MTCC9618) mediated biosynthesized silver nanoparticles-AgNPs against Staphylococcus aureus and Escherichia coli. Int J Nanosci 20(4):2150038. https://doi.org/10.1142/S0219581X21500381

    Article  CAS  Google Scholar 

  • Geetha MS, Nagabhushana H, Shivananjaiah HN (2016) Green mediated synthesis and characterization of ZnO nanoparticles using euphorbia Jatropha latex as reducing agent. J Sci Adv Mater Dev 1(3):301–310. https://doi.org/10.1016/j.jsamd.2016.06.015

    Article  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper-based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752. https://doi.org/10.1039/c3ra42118j

    Article  CAS  Google Scholar 

  • Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, Perez RA (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater 6(12):4470–4490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y, Zhao Y (2013) Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34(32):7884–7894

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kushwah T, Vishwakarma A, Yadav S (2015) Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Res Lett 10(1):1010. https://doi.org/10.1186/s11671-015-1010-4

    Article  CAS  PubMed  Google Scholar 

  • Hamed SM, Hagag ES, El-Raouf NA (2019) Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef Univ J Basic Appl Sci 8(1):9. https://doi.org/10.1186/s43088-019-0010-3

    Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. https://doi.org/10.1289/ehp.8284

    Article  PubMed  Google Scholar 

  • Haroon SA, Moustafa AA, Tawfik M, Ibrahim SH, Moawad DM (2021) Effect of nanoparticles on Globodera rostochiensis, which reported in Egypt

    Google Scholar 

  • Hassan MEM, Zawam HS, Nahas SEME, Desoukey AF (2016) Comparison study between silver nanoparticles and two nematicides against Meloidogyne incognita on tomato seedlings. Plant Pathol J (Faisalabad) 15(4):144–151. https://doi.org/10.3923/ppj.2016.144.151

    Article  CAS  Google Scholar 

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290. https://doi.org/10.1155/2013/578290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaiselvi D, Sundararaj P, Premasudha P, Hafez SL (2017) Nematicidal activity of green synthesized silver nanoparticles using plant extracts against root-knot nematode Meloidogyne incognita. Int J Nematol 27(1):81–94

    Google Scholar 

  • Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 117:108–114

    Article  CAS  Google Scholar 

  • Kantor M, Handoo Z, Kantor C, Carta L (2022) Top ten most important US-regulated and emerging plant-parasitic nematodes. Hortic 8(3):208

    Article  Google Scholar 

  • Kausar S (2022) Application of copper-based nanomaterials against parasitic nematodes. In: Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier, Amsterdam, pp 263–290

    Chapter  Google Scholar 

  • Kaushik H, Dutta P (2017) Chemical synthesis of zinc oxide nanoparticle: its application for antimicrobial activity and plant. Health Manag APS Annual Meeting, San Antonio, TX, p 109

    Google Scholar 

  • Khan MR (2008) Plant nematodes: methodology, morphology, systematics, biology and ecology. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Khan MR (2016) Management of wilt complexes in pulses through biological control agents. In a model training course, production and popularization of biological control agents to enhance pulse production: an eco-friendly approach. IIPR, Kanpur, pp 22–29

    Google Scholar 

  • Khan MR (2023a) Plant nematodes, an underestimated constraint in the global food production. In: Nematode diseases of crops and their sustainable management. Academic Press, pp 3–26

    Chapter  Google Scholar 

  • Khan MR (2023b) Nematode pests of agricultural crops, a global overview. In: Novel biological and biotechnological applications in plant nematode management, Springer Nature

    Google Scholar 

  • Khan MR, Akram M (2020) Nanoparticles and their fate in soil ecosystem. In: Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore, pp 221–245

    Chapter  Google Scholar 

  • Khan MR, Haque Z (2013) Morphological and biochemical responses of five tobacco cultivars to simultaneous infection with Pythium aphanidermatum and Meloidogyne incognita. Phytopathol Mediterr 52:98–109

    Google Scholar 

  • Khan MR, Jairajpuri MS (2012) Nematode infestation in horticultural crops, national scenario. In: Khan MR, Jairajpuri MS (eds) Nematode infestation part III: horticultural crops. National Academy of Sciences, Washington, DC, pp 1–30

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231. https://doi.org/10.3923/ppj.2014.214.231

    Article  CAS  Google Scholar 

  • Khan AK, Rashid R, Murtaza G, Zahra AJ (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 13(7):1169–1177. https://doi.org/10.4314/tjpr.v13i7.23

    Article  CAS  Google Scholar 

  • Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I et al (2019a) Nanoparticle–plant interactions: two-way traffic. Small 15(37):e1901794. https://doi.org/10.1002/smll.201901794

    Article  CAS  PubMed Central  Google Scholar 

  • Khan MR, Ahamad F, Rizvi TF (2019b) Effect of nanoparticles on plant pathogens. In: Ghobanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier, Acadmic Press, pp 215–240

    Chapter  Google Scholar 

  • Khan MR, Rizvi TF, Ahamad F (2019c) Application of nanomaterials in plant disease diagnosis and management. In: Nanobiotechnology applications in plant protection, pp 19–33. https://doi.org/10.1007/978-3-030-13296-5_2

    Chapter  Google Scholar 

  • Khan MR, Fromm KM, Rizvi TF, Giese B, Ahamad F, Turner RJ et al (2020) Metal nanoparticle–microbe interactions: synthesis and antimicrobial effects. Part Part Syst Charact 37(5):1900419. https://doi.org/10.1002/ppsc.201900419

    Article  CAS  Google Scholar 

  • Khan MR, Ahmad I, Shah MH (2021a) Emerging nematode infestation problems and its management in field crops. In: Singh KP (ed) Emerging trends in plant pathology. Springer, Germany

    Google Scholar 

  • Khan F, Park SK, Bamunuarachchi NI, Oh D, Kim YM (2021b) Caffeine-loaded gold nanoparticles: antibiofilm and anti-persister activities against pathogenic bacteria. Appl Microbiol Biotechnol 105(9):3717–3731. https://doi.org/10.1007/s00253-021-11300-3

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Ansari T, Shariq M, Siddiqui MA (2021c) Nanotechnology: a new beginning to mitigate the effect of plant-parasitic nematodes. In: Innovative approaches in diagnosis and management of crop diseases. Apple Academic Press, Cambridge, MA, pp 19–43

    Chapter  Google Scholar 

  • Khan M, Khan AU, Bogdanchikova N, Garibo D (2021d) Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne incognita, plant pathogens Ralstonia solanacearum and fusarium oxysporum. Molecules 26(9):2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AU, Khan M, Khan AA, Parveen A, Ansari S, Alam M (2022a) Effect of phyto-assisted synthesis of magnesium oxide nanoparticles (MgO-NPs) on bacteria and the root-knot nematode. Bioinorg Chem Appl 2022:3973841

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Bani Mfarrej MF, Danish M, Shariq M, Khan MF, Ansari MS, Hashem M, Alamri S, Ahmad F (2022b) Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode, Meloidogyne incognita. Green Chem Lett Rev 15(3):491–507

    Article  CAS  Google Scholar 

  • Liang W, Yu A, Wang G, Zheng F, Jia J, Xu H (2018) Chitosan-based nanoparticles of avermectin to control pine wood nematodes. Int J Biol Macromol 112:258–263

    Article  CAS  Google Scholar 

  • Lim D, Roh JY, Eom HJ, Choi JY, Hyun J, Choi J (2012) Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31(3):585–592. https://doi.org/10.1002/etc.1706; PMID 22128035

    Article  CAS  PubMed  Google Scholar 

  • Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2019) Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ 670:292–299. https://doi.org/10.1016/j.scitotenv.2019.03.210; PMID 30903901

    Article  CAS  PubMed  Google Scholar 

  • Mohamed EA, Elsharabasy SF, Abdulsamad D (2019) Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita. South Asian J Parasitol 2(1):1–6

    Google Scholar 

  • Mohiddin FA, Khan MR (2014) Root-knot nematode: ignored soil borne plant pathogen causing root diseases of chickpea. Eur J Biotech Biosci 2(1):04–10

    Google Scholar 

  • Nassar AMK (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5(1):14–19. https://doi.org/10.3923/ajn.2016.14.19

    Article  Google Scholar 

  • Nazir K, Mukhtar T, Javed H (2019) In vitro effectiveness of silver nanoparticles against root-knot nematode (Meloidogyne incognita). Pak J Zool 51:6

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927. https://doi.org/10.1080/01904167.2012.663443

    Article  CAS  Google Scholar 

  • Richards RM (1981) Antimicrobial action of silver nitrate. Microbios 31(124):83–91; PMID 6799750

    CAS  PubMed  Google Scholar 

  • Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36

    Article  CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY et al (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940. https://doi.org/10.1021/es803477u; PMID 19544910

    Article  CAS  PubMed  Google Scholar 

  • Sampathkumar K, Tan KX, Loo SCJ (2020) Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience 23(5):101055. https://doi.org/10.1016/j.isci.2020.101055; PMID 32339991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardella D, Gatt R, Valdramidis VP (2017) Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res Int 101:274–279. https://doi.org/10.1016/j.foodres.2017.08.019; PMID 28941694

    Article  CAS  PubMed  Google Scholar 

  • Sávoly Z, Hrács K, Pemmer B, Streli C, Záray G, Nagy PI (2016) Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environ Sci Pollut Res 23:9669–9678

    Article  Google Scholar 

  • Shanmugapriya J, Reshma CA, Srinidhi V, Harithpriya K, Ramkumar KM, Umpathy D, Gunasekaran K, Subashini R (2022) Green synthesis of copper nanoparticles using Withania somnifera and its antioxidant and antibacterial activity. J Nanomater 2022:7967294. https://doi.org/10.1155/2022/7967294

    Article  CAS  Google Scholar 

  • Sharma P, Chauhan R, Pande V, Basu T, Rajesh A, Kumar A (2022) Rapid sensing of Tilletia indica-Teliospore in wheat extract by a piezoelectric label free immunosensor. Bioelectrochemistry 147:108175. https://doi.org/10.1016/j.bioelechem.2022.108175; PMID 35749887

    Article  CAS  PubMed  Google Scholar 

  • Shoaib RM, Abdel-Razik AB, Ibrahim MM, Al-Kordy MA, Entsar HT (2022) Impact of engineered nanosilver on plant parasitic nematode and measurement of DNA damage

    Google Scholar 

  • Siddiqui ZA, Parveen A, Ahmad L, Hashem A (2019) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic (Amsterdam) 249:374–382. https://doi.org/10.1016/j.scienta.2019.01.054

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519(3):1156–1159. https://doi.org/10.1016/j.tsf.2010.08.061

    Article  CAS  Google Scholar 

  • Sintubin L, Gusseme DB, Meeren VP, Pycke BFG, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91:53–162

    Article  Google Scholar 

  • Soliman BS, Abbassy MA, Abdel-Rasoul MA, Nassar AM (2017) Efficacy of silver nanoparticles of extractives of Artemisia judaica against root-knot nematode. J Environ Stud Res 7:1–13

    CAS  Google Scholar 

  • Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X et al (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C Mater Biol Appl 40:24–31. https://doi.org/10.1016/j.msec.2014.03.037; PMID 24857461

    Article  CAS  PubMed  Google Scholar 

  • Tang C, He Z, Liu H, Xu Y, Huang H, Yang G et al (2020) Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 18(1):1–9

    Article  CAS  Google Scholar 

  • Thakur RK, Dhirta B, Shirkot P (2018) Studies on effect of gold nanoparticles on Meloidogyne incognita and tomato plants growth and development. bioRxiv 1:428144

    Google Scholar 

  • Udalova ZV, Folmanis GE, Khasanov FK, Zinovieva SV (2018) Selenium nanoparticles: an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid & White, 1919) Chitwood 1949. Dokl Biochem Biophys 482(1):264–267. https://doi.org/10.1134/S1607672918050095; PMID 30397889

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (a route for large-scale production of AgNPs). Insciences J 1:65–79. https://doi.org/10.5640/insc.010165

    Article  CAS  Google Scholar 

  • Wan K, Jiang B, Tan T, Wang H, Liang M (2022) Surface-mediated production of complexed• OH radicals and Fe2 O species as a mechanism for iron oxide peroxidase-like nanozymes. Small 18:2204372. https://doi.org/10.1002/smll.202204372

    Article  CAS  Google Scholar 

  • Wang S, Lawson R, Ray PC, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27(6):547–554. https://doi.org/10.1177/0748233710393395; PMID 21415096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhu G, Zhang X, Si Y (2020) Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci Total Environ 706:135711. https://doi.org/10.1016/j.scitotenv.2019.135711; PMID 31791784

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807. https://doi.org/10.1021/nl061025k; PMID 16895376

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Qu F, Xu H, Lai W, Andrew Wang Y, Aguilar ZP, Wei H (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157: H7. Biometals 25:45–53

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen Y, Zhao L, Feng Z, Peng K, Wei A et al (2020) Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos Part B Eng 197:108139. https://doi.org/10.1016/j.compositesb.2020.108139

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mat Res 79-82:513–516. https://doi.org/10.4028/www.scientific.net/AMR.79-82.513

    Article  CAS  Google Scholar 

  • Yin PT, Kim TH, Choi JW, Lee KB (2013) Prospects for graphene–nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15(31):12785–12799. https://doi.org/10.1039/c3cp51901e; PMID 23828095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17(10):1603. https://doi.org/10.3390/ijms17101603; PMID 27669221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S et al (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101(42):15027–15032. https://doi.org/10.1073/pnas.0404806101; PMID 15477593

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.R., Haroun, S.A., Rizvi, T.F. (2023). Novel Nanomaterials and Nanoformulations for Nematode Management in Agricultural Crops. In: Khan, M.R. (eds) Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-2893-4_10

Download citation

Publish with us

Policies and ethics