Skip to main content

Surfactant-Modified Clay Composites: Water Treatment Applications

  • Chapter
  • First Online:
Clay Composites

Abstract

The accumulation of various contaminants in water has become a threatening environmental issue, affecting all living creatures. Owing to this fact, mitigating water contamination problems by improving existing technologies and developing potential strategies has become an emerging area of research. Among several approaches for water treatment, adsorption has been attractive since it has unique advantages due to the use of natural and synthetic materials. As a natural adsorbent material, clay minerals are considered superior materials owing to their wide availability, low cost, excellent adsorption performance and cation exchangeability. To enhance the surface properties toward the removal of water pollutants, natural clays are subjected to various modifications. The surfactant-modified clay composites can remove a variety of pollutants than other composites due to the sorption of surfactant onto the external surface and interlayer spacing of clay minerals. This chapter encloses the application of surfactant-modified clay towards the removal of pollutants from water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel Ghafar, H.H., et al.: Removal of hazardous contaminants from water by natural and Zwitterionic surfactant-modified clay. ACS Omega 5(12), 6834–6845 (2020). https://pubs.acs.org/doi/10.1021/acsomega.0c00166

  2. Ahmad, N., et al.: Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. J. Environ. Manag. 295(June), 113362 (2021). https://doi.org/10.1016/j.jenvman.2021.113362

    Article  CAS  Google Scholar 

  3. Almasoud, N., et at.: A solid phase extraction based UPLC-ESI-MS/MS method using surfactant-modified clay as extraction sorbent for the removal and determination of rhodamine B in industrial wastewater samples. Desalin. Water Treat. 195, 222–231 (2020). https://doi.org/10.5004/dwt.2020.25896

    Article  CAS  Google Scholar 

  4. Barakan, S., Aghazadeh, V.: The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Environ. Sci. Pollut. Res. (Atia 2005) (2020)

    Google Scholar 

  5. Belachew, N., Hinsene, H.: Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci., 1–8 (2020). https://doi.org/10.1007/s13201-019-1121-7

  6. Choi, N., et al.: Adsorption behaviors of modified clays prepared with structurally different surfactants for anionic dyes removal 28(2), 0–3 (2023)

    Google Scholar 

  7. Dai, W.J., et al.: Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites. Chemosphere 251, 126074 (2020). https://doi.org/10.1016/j.chemosphere.2020.126074

    Article  CAS  Google Scholar 

  8. Deng, L., et al.: Dynamic benzene adsorption performance of microporous TMA+-exchanged montmorillonite: the role of TMA+ cations. Microporous Mesoporous Mater. 296(December 2019) (2020). https://doi.org/10.1016/j.micromeso.2019.109994

  9. Hedayati, M.S., et al.: Removal of polycyclic aromatic hydrocarbons from aqueous media using modified clinoptilolite. J. Environ. Manag. 273(March), 111113 (2020). https://doi.org/10.1016/j.jenvman.2020.111113

    Article  CAS  Google Scholar 

  10. Hedayati, M.S., Abida, O., Li, L.Y.: Adsorption of polycyclic aromatic hydrocarbons by surfactant-modified clinoptilolites for landfill leachate treatment. Waste Manag. 131(November 2020), 503–512 (2021)https://doi.org/10.1016/j.wasman.2021.06.033

  11. Jiang, J.Q., Ashekuzzaman, S.M.: Development of novel inorganic adsorbent for water treatment. Curr. Opin. Chem. Eng. 1(2), 191–199 (2012).https://doi.org/10.1016/j.coche.2012.03.008

  12. Kausar, A., et al.: Dyes adsorption using clay and modified clay: a review. J. Mol. Liq. 256, 395–407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034

  13. Krishna, B.S., et al.: Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci. 20(1–2), 65–71 (2001). https://doi.org/10.1016/s0169-1317(01)00039-4

  14. Lazaratou, C.V., Vayenas, D.V., Papoulis, D.: The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: a review. Appl. Clay Sci. 185(June), 105377 (2020). https://doi.org/10.1016/j.clay.2019.105377

    Article  CAS  Google Scholar 

  15. Lin, S., Juang, R.: 1-s2.0-S0304389402000262-main, vol. 92, pp. 315–326 (2002)

    Google Scholar 

  16. Luo, W., et al.: Journal of Water Process Engineering Lanthanum/Gemini surfactant-modi fi ed montmorillonite for simultaneous removal of phosphate and nitrate from aqueous solution. J. Water Process Eng. 33(July 2019), 101036 (2020). https://doi.org/10.1016/j.jwpe.2019.101036

  17. Malakul, P., Srinivasan, K.R., Wang, H.Y.: Metal adsorption and desorption characteristics of surfactant-modified clay complexes. Ind. Eng. Chem. Res. 37(11), 4296–4301 (1998). https://doi.org/10.1021/ie980057i

    Article  CAS  Google Scholar 

  18. Mao, S., Gao, M.: Functional organoclays for removal of heavy metal ions from water: a review. J. Mol. Liq. 334, 116143 (2021). https://doi.org/10.1016/j.molliq.2021.116143

  19. Mudzielwana, R., Gitari, M.W., Ndungu, P.: Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics. Heliyon 5(11), e02756 (2019). https://doi.org/10.1016/j.heliyon.2019.e02756

    Article  Google Scholar 

  20. Mukhopadhyay, R., et al.: Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents. J. Hazard. Mater. 377, 124–131 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.053

  21. Mundkur, N., et al.: Environmental Nanotechnology, Monitoring & Management Synthesis and characterization of clay-based adsorbents modified with alginate, surfactants, and nanoparticles for methylene blue removal. Environ. Nanotechnol. Monitor. Manag. 17(September 2021), 100644 (2022). https://doi.org/10.1016/j.enmm.2022.100644

  22. Munir, M., et al.: Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified brown clay. ACS Omega 5(27), 16711–16721 (2020). https://pubs.acs.org/doi/10.1021/acsomega.0c01613

  23. Mustapha, S., et al.: Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl. Water Sci. (2020)https://doi.org/10.1007/s13201-019-1138-y

  24. Najafi, H., et al.: A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Saf. Environ. Prot. 147, 8–36 (2021). https://doi.org/10.1016/j.psep.2020.09.028

    Article  CAS  Google Scholar 

  25. Nasrollahpour, S., et al.: Application of organically modified clay in removing BTEX from produced water. In: Geo-Congress 2020 GSP, vol. 319, pp. 275–283 (2020)

    Google Scholar 

  26. Nassar, M.Y., et al.: Adsorptive removal of manganese ions from polluted aqueous media by glauconite clay—Functionalized chitosan nanocomposites. J. Inorg. Organomet. Polym. Mater. (Ii) (2021). https://doi.org/10.1007/s10904-021-02028-8

  27. Onwuka, K., et al.: Hexadecyltrimethyl ammonium (HDTMA) and trimethylphenyl ammonium (TMPA) cations intercalation of Nigerian bentonite clay for multi-component adsorption of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solution: equilibrium and kinetic stud. J. Anal. Tech. Res. 02(02), 70–95 (2020). https://doi.org/10.26502/jatri.013

  28. Oussalah, A., Boukerroui, A.: Removal of cationic dye using alginate–organobentonite composite beads. Euro-Mediterr. J. Environ. Integr. 3, 1–10 (2020). https://doi.org/10.1007/s41207-020-00199-3

    Article  Google Scholar 

  29. Rahmani, S., et al.: Removal of cationic methylene blue dye using magnetic and anionic-cationic modified montmorillonite: kinetic isotherm and thermodynamic studies. Appl. Clay Sci. 184(July 2019), 105391 (2020). https://doi.org/10.1016/j.clay.2019.105391

    Article  CAS  Google Scholar 

  30. Ren, S., et al.: Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. ECSN, p. 124840 (2019). https://doi.org/10.1016/j.chemosphere.2019.124840

  31. Satouh, S., et al.: Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environ.—MDPI 8(11) (2021). https://www.mdpi.com/2076-3298/8/11/124

  32. Tamjidi, S., et al.: Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: a review study. Process Saf. Environ. Prot. 148, 775–795 (2021). https://doi.org/10.1016/j.psep.2021.02.003

    Article  CAS  Google Scholar 

  33. Tohdee, K., Kaewsichan, L., Asadullah: Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. J. Environ. Chem. Eng. 6(2), 2821–2828 (2018). https://doi.org/10.1016/j.jece.2018.04.030

  34. Wang, H., et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects Cationic surfactant modified attapulgite for removal of phenol from wastewater. Colloids Surf. A Physicochem. Eng. Aspects 641(February), 128479 (2022). https://doi.org/10.1016/j.colsurfa.2022.128479

  35. Wasewar, K.L., et al.: Process intensification of treatment of inorganic water pollutants. In: Inorganic Pollutants in Water. INC (2020). https://doi.org/10.1016/B978-0-12-818965-8.00013-5

  36. Xiao, T., et al.: Colloids and Surfaces A: Physicochemical and Engineering Aspects Adsorption of tungstate using cationic Gemini surfactant-modified montmorillonite: influence of alkyl chain length. Colloids Surf. A Physicochem. Eng. Aspects. 629(September), p. 127484 (2021). https://doi.org/10.1016/j.colsurfa.2021.127484

  37. Zhang, T., et al.: Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-. Chem. Eng. J., 127574 (2020). https://doi.org/10.1016/j.cej.2020.127574

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jayarathna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perera, M.D.R., Amarasena, R.A.L.R., Bandara, W.M.A.T., Weerasooriya, R., Jayarathna, L. (2023). Surfactant-Modified Clay Composites: Water Treatment Applications. In: Vithanage, M., Lazzara, G., Rajapaksha, A.U. (eds) Clay Composites. Advances in Material Research and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2544-5_11

Download citation

Publish with us

Policies and ethics