Skip to main content

Innovative Strategies in Drug Discovery and Pharmacoinformatics

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research
  • 463 Accesses

Abstract

Drug discovery comprises all the activities involved in transforming a compound from a drug candidate to a product approved for marketable form and gaining regulatory permission to market it for use in the target indication(s). Bioinformatics, as related to genetics and genomics, is a scientific subdiscipline that involves using software tools to collect, store, compare, analyze and understand biological data and information, such as DNA, RNA, or protein and amino acid sequences or annotations about those sequences. The various innovative approaches in drug discovery include gene sequencing strategies, the role of bioinformatics, tissue expression patterns for target validation, ultra-high-throughput screening for lead identification, biology and chemistry approaches for developability screens, and finally the selection of a candidate molecule for clinical development. The above methodologies are incorporated in this chapter in detail. The overall detail explicates the progression of molecular targets to novel therapeutics under a new paradigm for drug discovery. These details will be useful for researchers working in the domain of drug discovery and pharmacoinformatics and eventually may help bring more effective drugs to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agilent (n.d.). http://www.genomics.agilent.com/. Assessed 22 July 2022

  • Al-Salhi R, Abdul-Sada A, Lange A et al (2012) The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environ Sci Technol 46:9080–9088

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  PubMed  Google Scholar 

  • Bennett CF (2019) Therapeutic antisense oligonucleotides are coming of age. Ann Rev Med 70:307–321

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bioconductor (n.d.) Open-Source Software for Bioinformatics. http://www.bioconductor.org/packages/2.9/bioc/html/goseq.html. Assessed 22 July 2022.

  • Blass BE (2015) Basic principles of drug discovery and development. Academic, New York, NY

    Google Scholar 

  • Boss A, Kolb A, Hofmann M et al (2010) Diffusion tensor imaging in a human PET/MR hybrid system. Investig Radiol 45:270–274

    Article  Google Scholar 

  • Burbaum J, Tobal GM (2002) Proteomics in drug discovery. Curr Opin Chem Biol 6:427–433

    Article  CAS  PubMed  Google Scholar 

  • Casazza JP, Cale EM, Narpala S (2022) Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med 28:1022–1030. https://doi.org/10.1038/s41591-022-01762-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemicalize(n.d.). http://chemicalize.org. Assessed 22 July 2022

  • Computational Biology and Informatics Laboratory (n.d.). http://www.gusdb.org. Assessed 22 July 2022

  • Cosentino U, Pitea D, Moro G (2009) Conformational behaviour determines the low-relaxivity state of a conditional MRI contrast agent. Phys Chem Chem Phy 11:3943–3950

    Article  CAS  Google Scholar 

  • Dale JW, Schantz MV (2007) From genes to genomes. Concepts and applications of DNA technology, 2nd edn. Wiley, London

    Google Scholar 

  • David PC, Nanette JP (2013) DNA sequencing. In: Clark DP, Pazdernik NJ (eds) Molecular biology, 2nd edn. Academic, New York, NY, pp 227–247. ISBN 9780123785947.

    Google Scholar 

  • Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139

    Article  PubMed  Google Scholar 

  • Glick BR, Pasternak JJ, Patten CL (2010) Molecular biotechnology: principles and applications of recombinant DNA, 4th edn. ASM Press, Washington, DC

    Google Scholar 

  • Goodman LS, Gilman A, Brunton LL et al (2006) Goodman & Gilman's the pharmacological basis of therapeutics. McGraw-Hill, New York, NY

    Google Scholar 

  • Grant GR, Manduchi E, Stoeckert CJ Jr (2007) Analysis and management of microarray gene expression data. Curr Protoc Mol Biol 77:19–26

    Article  Google Scholar 

  • Gross S, Piwnica-Worms D (2006) Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol 10:33–342

    Article  Google Scholar 

  • Hartman KB, Laus S, Bolskar RD et al (2008) Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett 8:415–419

    Article  CAS  PubMed  Google Scholar 

  • Hoover R, Hunt T, Benedict M et al (2016) Single and multiple ascending-dose studies of oral delafloxacin: effects of food, sex, and age. Clin Ther 38:39–52. https://doi.org/10.1016/j.clinthera.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  • Hwang TJ, Kesselheim AS (2016) Vaccine pipeline has grown during the past two decades with more early-stage trials from small and medium-size companies. Health Aff 35:219–226. https://doi.org/10.1377/hlthaff.2015.1073

    Article  Google Scholar 

  • Jaffer FA, Libby P, Weissleder R (2009) Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 29:1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanna K, Stefano D (2011) Disease gene identification: methods and protocols. Springer, New York, NY

    Google Scholar 

  • Kalimuthu S, Jeong JH, Oh JM (2017) Drug discovery by molecular imaging and monitoring therapy response in lymphoma. Int J Mol Sci 18:1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogsgaard-Larsen P, Liljefors T, Madsen U (2004) Text book of drug design and discovery, 3rd edn. Taylor & Francis, London

    Google Scholar 

  • Kubinyi H, Folkers G, Martin YC (1998) 3D QSAR in drug design: recent advances, vol 3. Kluwer Academic Publishers, Norwell, MA

    Book  Google Scholar 

  • Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113:2437–2468

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sanseau P, Simola DF et al (2016) Systematic analysis of drug targets confirms expression in disease-relevant tissues. Sci Rep 6:36205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummar S, Rubinstein L, Kinders R et al (2008) Phase 0 clinical trials: conceptions and misconceptions. Cancer J 14:133–137. https://doi.org/10.1097/PPO.0b013e318172d6f3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyoto Enclyclopedia of Genes and Genomes (n.d.). http://www.genome.jp/kegg/. Assessed 22 July 2022

  • Larson RS (2006) Bioinformatics and drug discovery. Humana Press, Totowa, NJ

    Book  Google Scholar 

  • Lecchi M, Ottobrini L, Martelli C et al (2007) Instrumentation and probes for molecular and cellular imaging. Q J Nucl Med Mol Imaging 51:111

    CAS  PubMed  Google Scholar 

  • Leon D, Markel S (2006) In silico technologies in drug target identification and validation. Taylor & Francis, London

    Book  Google Scholar 

  • Lu Y, Machado HB, Bao Q (2011) In vivo mouse bioluminescence tomography with radionuclide-based imaging validation. Mol Imaging Biol 13:53–58

    Article  PubMed  Google Scholar 

  • Mahan VL (2014) Clinical trial phases. Int J Clin Med 5:1374–1383

    Article  Google Scholar 

  • Marcotte R, Sayad A, Brown KR et al (2016) Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell 164:293–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin YC (2010) Quantitative drug design: a critical introduction, 2nd edn. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  CAS  PubMed  Google Scholar 

  • Michne WF (2010) Lead discovery: the process. In: Hit-to-lead process—lead compound discovery, milestone to new small molecule drug discovery. Wiley, New York, pp 1–19

    Google Scholar 

  • Miggiels P, Wouters B, van Westen GJ (2019) Novel technologies for metabolomics: more for less. TRAC Trend Anal Chem 120:115323

    Article  Google Scholar 

  • Nagarajan K, Bodla RB (2018) Fundamentals principles of drug discovery. LAP Lambert Academic Publishing, Saarbruecken. ISBN: 9786139981441.

    Google Scholar 

  • National Cancer Institute: Centre for Biomedical Informatics & Information Technology (n.d.). http://ncicb.nci.nih.gov/. Assessed 22 July 2022

  • Naz S, Vallejo M, García A et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr 1353:99–105

    Article  CAS  Google Scholar 

  • Ottobrini L, Ciana P, Biserni A (2006) Molecular imaging: a new way to study molecular processes in vivo. Mol Cell Endocrinol 246:69–75

    Article  CAS  PubMed  Google Scholar 

  • Patrick GC (2001) An introduction to medicinal chemistry, 2nd edn. Oxford University Press, New Delhi

    Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  • Prejzendanc T, Wasik S, Blazewicz J (2016) Computer representations of bioinformatics models. Curr Bioinforma 11:551–560

    Article  CAS  Google Scholar 

  • Rankovic Z, Morphy R (2010) Lead generation approaches in drug discovery. Willey, Hoboken, NJ

    Book  Google Scholar 

  • Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14:9–21

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Gandolfo C, Morana G (2010) New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol 40:999–1009

    Article  PubMed  Google Scholar 

  • Rudin M (2009) Noninvasive structural, functional, and molecular imaging in drug development. Curr Opin Chem Biol 13:360–371

    Article  CAS  PubMed  Google Scholar 

  • Shafiq N, Rajagopalan S, Kushwaha HN et al (2014) Single ascending dose safety and pharmacokinetics of CDRI-97/78: first-in-human study of a novel antimalarial drug. Malar Res Treat 2014:372521. https://doi.org/10.1155/2014/372521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shendure J, Lieberman AE (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoaib M, Singh A, Gulati S et al (2021) Chapter 8. In: Mapping genomes by using bioinformatics data and tools, chemoinformatics and bioinformatics in the pharmaceutical sciences, 1st edn. Academic, New York, NY, pp 245–278, ISBN 9780128217481.

    Chapter  Google Scholar 

  • Slatko BE, Albright LM, Tabor S et al (2001) DNA sequencing by the dideoxy method. Curr Protoc Mol Biol 7:Unit7.4A. https://doi.org/10.1002/0471142727.mb0704as47

    Article  Google Scholar 

  • Soule MC, Longnecker K, Johnson WM et al (2015) Environmental metabolomics: analytical strategies. Mar Chem 177:374–387

    Article  Google Scholar 

  • Tanner GJ, Blundell MJ, Colgrave ML et al (2016) Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for celiac and gluten-intolerant populations. Plant Biotechnol J 14:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Teufel A, Krupp M, Weinmann A et al (2006) Current bioinformatics tools in genomic biomedical research (review). Int J Mol Med 17:967–973

    CAS  PubMed  Google Scholar 

  • Totowa H (2007) Target discovery and validation reviews and protocols: emerging molecular targets and treatment options, vol 2. Humana Press, Totowa, NJ, p XIV, 345

    Google Scholar 

  • Van Norman GA (2019) Phase II trials in drug development and adaptive trial design. JACC Basic Transl Sci 4:428–437. https://doi.org/10.1016/j.jacbts.2019.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Velde GV, Baekelandt V, Dresselaers TE et al (2009) Magnetic resonance imaging and spectroscopy methods for molecular imaging. Q J Nucl Med Mol Imaging 53:565

    Google Scholar 

  • Viant MR (2007) Metabolomics of aquatic organisms: the new ‘omics’ on the block. Mar Ecol Prog Ser 332:301–306

    Article  CAS  Google Scholar 

  • Virtual Computational Chemistry Laboratory (n.d.). www.vcclab.org/lab/alogps/. Assessed 22 July 2022

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323:844–853. https://doi.org/10.1001/jama.2020.1166

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi H, Prasad R (2009) Advances in multimodality molecular imaging. J Med Phys 34:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Zhou Z, Chen Y et al (2020) Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin Biochem 76:5–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All the authors are highly grateful to the Director Dr. (Col) A. Garg and Joint Director Dr. Manoj Goel from the KIET Group of Institutions for their continuous inspiration and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, K., Goel, R., Ghai, R., Grover, P. (2023). Innovative Strategies in Drug Discovery and Pharmacoinformatics. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_7

Download citation

Publish with us

Policies and ethics