Skip to main content

Antibiotics: Past, Present, Future, and Clinical Pipeline

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research

Abstract

A significant threat to global public health is antimicrobial resistance (AMR). The estimated cause of at least 700,000 deaths each year worldwide is medication-resistant bacterial infections (including tuberculosis). Estimates suggest that around ten million deaths are expected annually by 2050, due to drug-resistant bacteria. The World Health Organization (WHO) surveillance report concedes resistance in common human pathogens like Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus is one of the biggest threats to humankind. Antibiotic resistance is becoming globalized due to the significant high evolutionary pressure. Thus, developing new therapeutic agents against new targets or antibacterials with different approaches to target pathogenic bacteria has become imperative. This review listed out various antibiotics act with different mechanisms, and bacteria also acquire different mechanisms to dodge these antibiotics. The mechanism includes removing antibiotics out of the cell by increased efflux, not allowing the antibiotic to enter by decreased uptake, decreasing the antibiotic binding by modifying the target, degrading the antibiotics by enzyme, etc. So, the novel antibacterial agent uses four criteria: absence of known cross-resistance, new class, new target, and a new mode of action developed to treat AMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed MO, Baptiste KE (2018) Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 24:590–606

    Article  CAS  PubMed  Google Scholar 

  • Ahmed W, Menon S, Godbole AA et al (2014) Conditional silencing of topoisomerase I gene of mycobacterium tuberculosis validates its essentiality for cell survival. FEMS Microbiol Lett 353:116–123

    Article  CAS  PubMed  Google Scholar 

  • Almasaudi SB (2018) Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J Biol Sci 25:586–596

    Article  PubMed  Google Scholar 

  • Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ayobami O, Willrich N, Harder T et al (2019) The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect 8:1747–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal S, Tawar U, Singh M et al (2010) Old class but new dimethoxy analogue of benzimidazole: a bacterial topoisomerase I inhibitor. Int J Antimicrob Agents 35:186–190

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Sinha D, Singh M et al (2012) 3,4-dimethoxyphenyl bis-benzimidazole, a novel DNA topoisomerase inhibitor that preferentially targets Escherichia coli topoisomerase I. J Antimicrob Chemother 67:2882–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard AML, Bowden SD, Burr T et al (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc B Biol Sci 362:1165–1183

    Article  CAS  Google Scholar 

  • Barry PM, Klausner JD (2009) The use of cephalosporins for gonorrhea: the impending problem of resistance. Expert Opin Pharmacother 10:555–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassetti M, Vena A, Croxatto A et al (2018) A continuous publication, open access, peer-reviewed journal citation. Drugs Context 7:212527

    PubMed  PubMed Central  Google Scholar 

  • Belete TM (2019) Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum Microbiome J 11:100052

    Article  Google Scholar 

  • Beyer P, Paulin S (2020) Priority pathogens and the antibiotic pipeline: an update. Bull World Health Organ 98:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Bizard AH, Yang X, Débat H et al (2018) TopA, the Sulfolobus solfataricus topoisomerase III, is a decatenase. Nucleic Acids Res 46:861–872

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M (2012) A quorum sensing-mediated switch contributes to natural transformation of vibrio cholerae. Mob Genet Elements 2:224–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 45:1289–1302

    Article  CAS  PubMed  Google Scholar 

  • Breijyeh Z, Jubeh B, Karaman R (2020) Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25:1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochu J, Breton ÉV, Drolet M (2020) Supercoiling, R-loops, replication and the functions of bacterial type 1A topoisomerases. Genes (Basel) 11:249–267

    Article  CAS  PubMed  Google Scholar 

  • Brown PO, Cozzarelli NR (1981) Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci U S A 78:843–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TDH, Walsh CT (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9:199–215

    Article  CAS  PubMed  Google Scholar 

  • Bush NG, Diez-Santos I, Abbott LR et al (2020) Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules 25:5562–5589

    Article  Google Scholar 

  • Chen AY, Yu C, Gatto B et al (1993) DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sci U S A 90:8131–8135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SH, Chan NL, Hsieh TS (2013) New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 82:139–170

    Article  CAS  PubMed  Google Scholar 

  • Cheng B, Cao S, Vasquez V et al (2013) Identification of anziaic acid, a lichen depside from hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 8:e60770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong Y, Yang S, Rao X (2020) Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res 21:169–176

    Article  PubMed  Google Scholar 

  • Cornelis P, Aendekerk S (2004) A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150:752–756

    Article  CAS  PubMed  Google Scholar 

  • Costa-Lourenço APR, Barros dos Santos KT et al (2017) Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Brazilian J Microbiol 48:617–628

    Article  Google Scholar 

  • Cuypers WL, Jacobs J, Wong V et al (2018) Fluoroquinolone resistance in Salmonella: insights by wholegenome sequencing. Microb Genomics 4:e000195

    Article  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    Article  CAS  PubMed  Google Scholar 

  • Diawara I, Barguigua A, Katfy K et al (2017) Molecular characterization of penicillin non-susceptible Streptococcus pneumoniae isolated before and after pneumococcal conjugate vaccine implementation in Casablanca. Morocco Ann Clin Microbiol Antimicrob 16:23

    Article  PubMed  Google Scholar 

  • Eggermont D, Smit MAM, Kwestroo GA et al (2018) The influence of gender concordance between general practitioner and patient on antibiotic prescribing for sore throat symptoms: a retrospective study. BMC Fam Pract 19:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faron ML, Ledeboer NA, Buchan BW (2016) Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant enterococcus in the health care setting. J Clin Microbiol 54:2436–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Villa D, Aguilar MR, Rojo L (2019) Folic acid antagonists: antimicrobial and immunomodulating mechanisms and applications. Int J Mol Sci 20:20

    Article  Google Scholar 

  • Fisher K, Phillips C (2009) The ecology, epidemiology and virulence of enterococcus. Microbiology 155:1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Floss HG, Yu TW (2005) Rifamycin—mode of action, resistance, and biosynthesis. Chem Rev 105:621–632

    Article  CAS  PubMed  Google Scholar 

  • Garcia PK, Annamalai T, Wang W et al (2019) Mechanism and resistance for antimycobacterial activity of a fluoroquinophenoxazine compound. PLoS One 14:e0207733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghotaslou R (2015) Prevalence of antibiotic resistance in helicobacter pylori: a recent literature review. World J Methodol 5:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannella RA (1996) Salmonella. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch, Galveston, TX

    Google Scholar 

  • Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67:625–630

    Article  CAS  PubMed  Google Scholar 

  • Harris SR, Feil EJ, Holden MTG et al (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz E (2018) The return of pfeiffer’s bacillus: rising incidence of ampicillin resistance in haemophilus influenzae. Microb Genomics 4:e000214

    Article  Google Scholar 

  • Höltje J-V (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang F, He ZG (2010) Characterization of an interplay between a Mycobacteriumtuberculosis MazF homolog, Rv1495 and its sole DNA topoisomerase i. Nucleic Acids Res 38:8219–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W et al (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Article  CAS  PubMed  Google Scholar 

  • Kareb O, Aïder M (2020) Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: a review. Probiotics Antimicrob Proteins 12:5–17

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan MK, Khilare MM, Nikoomanesh K et al (2013) Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 28:419–435

    Article  CAS  PubMed  Google Scholar 

  • Kirmusaoglu S (2016) Staphylococcal biofilms: pathogenicity, mechanism and regulation of biofilm formation by quorum-sensing system and antibiotic resistance mechanisms of biofilm-embedded microorganisms. In: Microbial biofilms—importance and applications. InTechOpen, London

    Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar M, Meisterernst M, Roeder RG (1993) Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc Natl Acad Sci U S A 90:11508–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyżek P (2019) Challenges and limitations of anti-quorum sensing therapies. Front Microbiol 10:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. Massachusetts Eye and Ear Infirmary, Boston, MA

    Google Scholar 

  • Lee CR, Lee JH, Park M et al (2017) Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 7:1–35

    Article  Google Scholar 

  • Lee CM, Wang G, Pertsinidis A et al (2019) Topoisomerase III acts at the replication fork to remove precatenanes. J Bacteriol 201:e00563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leelaram MN, Bhat AG, Hegde SM et al (2012) Inhibition of type IA topoisomerase by a monoclonal antibody through perturbation of DNA cleavage-religation equilibrium. FEBS J 279:55–65

    Article  CAS  PubMed  Google Scholar 

  • Leelaram MN, Bhat AG, Godbole AA et al (2013) Type IA topoisomerase inhibition by clamp closure. FASEB J 27:3030–3038

    Article  CAS  PubMed  Google Scholar 

  • Lim M, Liu LF, Jacobson-Kram D et al (1986) Induction of sister chromatid exchanges by inhibitors of topoisomerases. Cell Biol Toxicol 2:485–494

    Article  CAS  PubMed  Google Scholar 

  • Lin M-F (2014) Antimicrobial resistance in Acinetobacter baumannii : from bench to bedside. World J Clin Cases 2:787

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu LF, Depew RE, Wang JC (1976) Knotted single-stranded DNA rings: a novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coli ω protein. J Mol Biol 106:439–452

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gallay C, Kjos M et al (2017) High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 13:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucena MI, Andrade RJ, Rodrigo L et al (2000) Trovafloxacin-induced acute hepatitis. Clin Infect Dis 30:400–401

    Article  CAS  PubMed  Google Scholar 

  • Mandell L, Tillotson G (2002) Safety of fluoroquinolones: an update. Can J Infect Dis 13:54–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques AT, Vítor JMB, Santos A (2020) Trends in helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches. Micro Genomics 6:e000344

    Google Scholar 

  • McDevitt D, Payne DJ, Holmes DJ et al (2002) Novel targets for the future development of antibacterial agents. J Appl Microbiol 92:28–34

    Article  Google Scholar 

  • Merino A, Madden KR, Lane WS et al (1993) DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365:227–232

    Article  CAS  PubMed  Google Scholar 

  • Mimouni FZ, Belboukhari N, Sekkoum K (2019) Mini review: is fluoroquinolone drug or poison? J Complex Heal Sci 2:70–76

    Article  Google Scholar 

  • Młynarczyk-Bonikowska B, Majewska A et al (2020) Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol 209:95–108

    Article  PubMed  Google Scholar 

  • Naqvi SAR, Roohi S, Iqbal A et al (2018) Ciprofloxacin: from infection therapy to molecular imaging. Mol Biol Rep 45:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Neelakanta A, Sharma S, Kesani VP et al (2015) Impact of changes in the NHSN catheter-associated urinary tract infection (CAUTI) surveillance criteria on the frequency and epidemiology of CAUTI in intensive care units (ICUS). Infect Control Hosp Epidemiol 36:346–349

    Article  PubMed  Google Scholar 

  • Ng LK, Martin IE (2005) The laboratory diagnosis of Neisseria gonorrhoeae. Can J Infect Dis Med Microbiol 16:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholls TJ, Nadalutti CA, Motori E et al (2018) Topoisomerase 3α is required for decatenation and segregation of human mtDNA. Mol Cell 69:9–23.e6

    Article  CAS  PubMed  Google Scholar 

  • Nitiss JL (1994) Roles of DNA topoisomerases in chromosomal replication and segregation. Adv Pharmacol 29A:103–134

    Article  CAS  PubMed  Google Scholar 

  • Nüesch-Inderbinen M, Heini N, Zurfluh K et al (2016) Shigella antimicrobial drug resistance mechanisms, 2004–2014. Emerg Infect Dis 22:1083–1085

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurse P, Levine C, Hassing H et al (2003) Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem 278:8653–8660

    Article  CAS  PubMed  Google Scholar 

  • Organización Mundial de la Salud (2016) WHO | global action plan on AMR. WHO, Geneva

    Google Scholar 

  • Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Paluch E, Rewak-Soroczyńska J, Jędrusik I et al (2020) Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 104:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson DL (2006) Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 119:20–70

    Article  Google Scholar 

  • Pena RT, Blasco L, Ambroa A et al (2019) Relationship between quorum sensing and secretion systems. Front Microbiol 10:1–14

    Article  CAS  Google Scholar 

  • Penchovsky R (2018) RNA as a potent target for antibacterial drug discovery. Biomed J Sci Tech Res 10:7752–7753

    Google Scholar 

  • Pinto TCA, Neves FPG, Souza ARV et al (2019) Evolution of penicillin non-susceptibility among streptococcus pneumoniae isolates recovered from asymptomatic carriage and invasive disease over 25 years in Brazil, 1990–2014. Front Microbiol 10:1–10

    Article  Google Scholar 

  • Pommier Y, Barcelo JM, Rao VA et al (2006) Repair of topoisomerase i-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 81:179–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasetyoputri A, Jarrad AM, Cooper MA et al (2019) The eagle effect and antibiotic-induced persistence: two sides of the same coin? Trends Microbiol 27:339–354

    Article  CAS  PubMed  Google Scholar 

  • Qin T, Qian H, Fan W et al (2017) Newest data on fluoroquinolone resistance mechanism of Shigella flexneri isolates in Jiangsu Province of China. Antimicrob Resist Infect Control 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani P, Nagaraja V (2019) Genome-wide mapping of topoisomerase I activity sites reveal its role in chromosome segregation. Nucleic Acids Res 47:1416–1142

    Article  CAS  PubMed  Google Scholar 

  • Ranjan N, Fulcrand G, King A et al (2014) Selective inhibition of bacterial topoisomerase i by alkynyl- bisbenzimidazoles. Medchemcomm 5:816–825

    Article  CAS  PubMed  Google Scholar 

  • Ravishankar S, Ambady A, Awasthy D et al (2015) Genetic and chemical validation identifies mycobacterium tuberculosis topoisomerase i as an attractive anti-tubercular target. Tuberculosis 95:589–598

    Article  CAS  PubMed  Google Scholar 

  • Rello J, Kalwaje Eshwara V, Lagunes L et al (2019) A global priority list of the TOp TEn resistant microorganisms (TOTEM) study at intensive care: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis 38:319–323

    Article  PubMed  Google Scholar 

  • Seddek A, Annamalai T, Tse-Dinh Y-C (2021) Type IA topoisomerases as targets for infectious disease treatments. Microorganisms 9:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker E, Federle MJ (2017) Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 8:15

    Article  PubMed  Google Scholar 

  • Shariati A, Dadashi M, Moghadam MT et al (2020) Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep 10:12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuman S (1991) Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci U S A 88:10104–10108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevnsner T, Bohr VA (1993) Studies on the role of topoisomerases in general, gene- and strand-specific DNA repair. Carcinogenesis 14:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Suerbaum S, Brauer-Steppkes T, Labigne A et al (1998) Topoisomerase I of helicobacter pylori: juxtaposition with a flagellin gene (flaB) and functional requirement of a fourth zinc finger motif. Gene 210:151–161

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E, Magrini N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Organ Mund la Salud, pp 1–7

    Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku M (2019) Bacterial communication through membrane vesicles. Biosci Biotechnol Biochem 83:1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Tsakou F, Jersie-Christensen R, Jenssen H et al (2020) The role of proteomics in bacterial response to antibiotics. Pharmaceuticals 13:1–27

    Article  Google Scholar 

  • Tse-Dinh YC (2009) Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res 37:731–737

    Article  CAS  PubMed  Google Scholar 

  • Tse-Dinh YC (2015) Targeting bacterial topoisomerase i to meet the challenge of finding new antibiotics. Future Med Chem 7:459–471

    Article  CAS  PubMed  Google Scholar 

  • van Duin D (2017) Carbapenem-resistant Enterobacteriaceae: what we know and what we need to know. Virulence 8:379–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Döhren H (2009) Antibiotics: actions, origins, resistance, by C. Walsh. 2003. Washington, DC: ASM press. 345 pp. $99.95 (hardcover). Protein Sci 13:3059–3060

    Article  Google Scholar 

  • Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–692

    Article  CAS  PubMed  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  CAS  PubMed  Google Scholar 

  • Watkins RR, Holubar M, David MZ (2019) Antimicrobial resistance in methicillin-resistant staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother 63:e01216–e01219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DN, Hauryliuk V, Atkinson GC et al (2020) Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol 18:637–648

    Article  CAS  PubMed  Google Scholar 

  • Wise EM, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci U S A 54:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzky A, Tollerson R, Ibba M (2019) Translational control of antibiotic resistance. Open Biol 9:190051

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan R, Hu S, Ma N et al (2019) Regulatory effect of DNA topoisomerase I on T3SS activity, antibiotic susceptibility and quorum-sensing-independent pyocyanin synthesis in Pseudomonas aeruginosa. Int J Mol Sci 20:1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh YC, Liu HF, Ellis CA et al (1994) Mammalian topoisomerase I has base mismatch nicking activity. J Biol Chem 269:15498–15504

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhang M, Annamalai T et al (2017) Synthesis, evaluation, and CoMFA study of fluoroquinophenoxazine derivatives as bacterial topoisomerase IA inhibitors. Eur J Med Chem 125:515–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang GF, Liu X, Zhang S et al (2018) Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 146:599–612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

V.T. is thank to AMR-DBT-BIRAC for funding this work. RS is thankful to ICMR for the research fellowship.

Funding

AMR-DBT-BIRAC (Sanction No. BT/PR31944/MED/29/1408/2019) funded VT for this work.

Transparency Declarations

V.T has received a DBT-BIRAC grant from the Department of Biotechnology. R.S. and V.T. have no conflicts of interest related to this work.

Author Contributions

R.S. wrote the first draft of the review; R.S added parts of new texts and figures; V.T edited and analysed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Tandon, V. (2023). Antibiotics: Past, Present, Future, and Clinical Pipeline. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_24

Download citation

Publish with us

Policies and ethics