Skip to main content

Chronological Monitoring of the Cross-Resistance Rate of Pseudomonas Aeruginosa Classified by the Radius-Distance Model

  • Chapter
  • First Online:
Facets of Behaviormetrics

Abstract

The approximate situation of the spread of antimicrobial-resistant bacteria can be estimated by the use of the cross-resistance rate (CRR). In our previous study, we reported some interesting features of the CRR that the pharmaceutical prescription of antibiotic drugs to patients reflects the asymmetric behavior of the pharmacists. Those behaviors can be represented by asymmetric data of the drugs, and we could gain new insights into that matter by applying the radius-distance model (Okada and Imaizumi in Behaviormetrika 14:81–96, 1987). This model was developed for evaluating the similarity of asymmetric data, and the degree of the similarity can be visualized by a configuration with points and the radii of circles in a multidimensional Euclidean space. We adopted the data of CRR of Pseudomonas aeruginosa as the first attempt to demonstrate the practical utility of this model. As a result, the same strains of antibiotics were distributed closely on the two-dimensional configuration. Even with different groups of antibiotics, the classification was found to be identical to the drugs’ mechanism of action. We clarified from the results of one month of chronological monitoring that the radii of the circles were influenced by a change in the environment, i.e., the hospital relocation. In conclusion, the radius-distance model has the potential for discovering new characteristics or specific features of the data from a new perspective in the fields of medical and pharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, S. I., Malak, H. A., & Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101–111.

    Article  Google Scholar 

  2. Aitken, C., & Jeffries, D. J. (2001). Nosocomial spread of viral disease. Clinical Microbiology Reviews, 14(3), 528–546.

    Article  Google Scholar 

  3. Antimicrobial resistance: no action today, no cure tomorrow, Remarks at a high-level panel on World Health Day 2011, World Health Organization, 7 April 2011. https://www.who.int/director-general/speeches/detail/antimicrobial-resistance-no-action-today-no-cure-tomorrow

  4. Bove, G., Okada, A., & Vicari, D. (2021). Methods for the analysis of asymmetric proximity data. Springer Nature.

    Google Scholar 

  5. Cell wall synthesis inhibitors: Penicillins, OSMOSIS from ELSEVIER. https://www.osmosis.org/learn/Cell_wall_synthesis_inhibitors:_Penicillins

  6. “Cephalosporin” from Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Cephalosporin

  7. Cuttelod, M., Senn, L., & Terletskiy V., et al. (2011). Molecular epidemiology of Pseudomonas aeruginosa in intensive care units over a 10-year period (1998–2007). Clinical Microbiology and Infection, 17(1), 57–62. https://doi.org/10.1111/j.1469-0691.2010.03164.x

  8. Drugs. Com. (2022). Drug Interactions between amikacin and gentamicin, https://www.drugs.com/drug-interactions/amikacin-with-gentamicin-153-0-1168-0.html#:~:text=Using%20gentamicin%20together%20with%20amikacin,or%20have%20preexisting%20kidney%20disease

  9. European Medicines Agency. (2018). Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics, EMA 795349. https://www.ema.europa.eu/en/news/disabling-potentially-permanent-side-effects-lead-suspension-restrictions-quinolone-fluoroquinolone#:~:text=These%20serious%20side%20effects%20include,and%20altered%20taste%20and%20smell.

  10. Fazeli, H., Akbari, R., Moghim, S., et al. (2012). Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 17(4), 332–337.

    Google Scholar 

  11. Godijk, N. G., Bootsma, M. C. J., & Bonten, M. J. M. (2022). Transmission routes of antibiotic resistant bacteria: A systematic review. BMC Infectious Diseases, 22, 482. https://doi.org/10.1186/s12879-022-07360-z

    Article  Google Scholar 

  12. Guerrini, V., Rosa, M. D., & Pasquini, S., et al. (2013). New fluoroquinolones active against fluoroquinolones-resistant Mycobacterium tuberculosis strains. Tuberculosis (Edinb), 93(4), 405–411. https://doi.org/10.1016/j.tube.2013.02.017

  13. Hatsuda, Y., Maki, S., Ishimaki, Y., et al. (2019). Development of a new correlation diagram to visualize the trends of antimicrobial cross-resistance. Journal of Biomedical Soft Computing and Human Sciences, 24(1), 39–48.

    Google Scholar 

  14. Hatsuda, Y., Ishizaka, T., Koizumi, N., et al. (2020). Monitoring antimicrobial cross-resistance with cross-resistance rate correlation diagrams: Changes in antibiotic susceptibility of Pseudomonas aeruginosa due to hospital relocation. Journal of Clinical Pharmacy and Therapeutics, 45, 13296. https://doi.org/10.1111/jcpt.13296

    Article  Google Scholar 

  15. Hatsuda, Y., Maki, S., & Ishizaka, T., et al. (2021). Visualization of cross-resistance between antimicrobials by asymmetric multidimensional scaling. Journal of Clinical Pharmacy and Therapeutics, 46, 13564. https://doi.org/10.1111/jcpt.13564

  16. Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical Pharmacology, 33(3), 300–305. https://doi.org/10.4103/joacp.JOACP_349_15, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672523/

  17. Kovačević, T., Avram, S., & Milaković, D. et al (2016). Therapeutic monitoring of amikacin and gentamicin in critically and noncritically ill patients. Journal of Basic and Clinical Pharmacy, 7(3), 65–69. https://doi.org/10.4103/0976-0105.183260, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910469/#:~:text=Results%3A,patients%20(P%20%3D%200.457

  18. Moradali, M. F., Ghods S., & Rehm B. H. A. (2017). Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7, 39. https://doi.org/10.3389/fcimb.2017.00039

  19. Mukae, H., Kawanami, T., & Yatera, K., et al. (2014). Efficacy and safety of levofloxacin in patients with bacterial pneumonia evaluated according to the new Clinical Evaluation Methods for New Antimicrobial Agents to Treat Respiratory Infections (Second Version). Journal of Infection and Chemotherapy, 20(7), 417–422. https://doi.org/10.1016/j.jiac.2014.03.009

  20. Nielsen, S. S., Bicout, D. J., & Calistri, P., et al. (2022). Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. EFSA Journal, 20(5), 7310. https://doi.org/10.2903/j.efsa.2022.7310

  21. Lila, G., Mulliqi, G., Raka, L., et al. (2018). Molecular epidemiology of Pseudomonas aeruginosa in university clinical center of Kosovo. Infection and Drug Resistance, 11, 2039–2046.

    Article  Google Scholar 

  22. Okada, A., & Imaizumi, T. (1987). Nonmetric multidimensional scaling of asymmetric proximities. Behaviormetrika, 14(21), 81–96.

    Article  Google Scholar 

  23. Okada, A., & Imaizumi, T. (1994). Method of PC multidimensional scaling configuration (pp. 10–29). Kyoritsu Shuppan Co., Ltd. (in Japanese). ISBN4–320–01472–3.

    Google Scholar 

  24. Okada, A., & Imaizumi, T. (1997). Asymmetric multidimensional scaling of two-mode three-way proximities. Journal of Classification, 14, 195–224.

    Article  MATH  Google Scholar 

  25. Okada, A., & Imaizumi, T. (2003). Developing a layout of a supermarket through asymmetric multidimensional scaling and cluster analysis of purchase data between data science and applied data analysis (pp. 587–594). Springer.

    Google Scholar 

  26. Okada, A. (2011). Supekutoru bunnkai niyoru gaikokujinn ni taisuru shinnkinnkann no bunnseki [Analyzing social affinity for foreigners by spectral decomposition: Asymmetric multidimensional scaling of EASS 2008 Data]. GSS Research Series, 11, 119–128. (In Japanese).

    Google Scholar 

  27. Okada, A., & Tsurumi, H. (2012). Asymmetric multidimensional scaling of brand switching among margarine brands. Behaviormetrika, 39, 111–126.

    Article  Google Scholar 

  28. Pham, T. M., Kretzschmar, M., Bertrand, X., & Bootsma, M. (2019). Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models. PLoS Computational Biology, 15(8), e1006697. https://doi.org/10.1371/journal

    Article  Google Scholar 

  29. Pham, T. D. M., Ziora, Z. M., & Blaskovich, M. A. T. (2019). Quinolone antibiotics. Medicinal Chemistry Communication, 10, 1719–1739. https://doi.org/10.1039/C9MD00120D, https://pubs.rsc.org/en/content/articlehtml/2019/md/c9md00120d#:~:text=The%20quinolone%20class%20of%20antibiotics,supercoiling%20required%20for%20DNA%20synthesis

  30. Pham, T. M., Büchler, A. C., & Voor in ‘t holt, A. F., et al. (2022). Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit-analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrobial Resistance and Infection Control, 11, 55. https://doi.org/10.1186/s13756-022-01095-x

  31. Poole, K. (2005). Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49(2), 479–487. https://doi.org/10.1128/AAC.49.2.479-487.2005, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC547279/

  32. Public Awareness Council for Promotion of Antimicrobial Resistance (AMR) Countermeasures, International Infectious Disease Control Coordination Office, Japan Cabinet, October 18, 2016. (in Japanese). https://www.kantei.go.jp/jp/singi/kokusai_kansen/amr_taisaku/dai1/gijiroku.pdf, https://www.kantei.go.jp/jp/singi/kokusai_kansen/amr_taisaku/dai4/index.html

  33. Queenan, A. M., & Bush, K. (2007). Carbapenemases: the versatile β-Lactamases. Clinical Microbiology Reviews, 20(3), 440–458. https://doi.org/10.1128/CMR.00001-07, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932750/

  34. Reuter, S., Sigge, A., Wiedeck, H., & Trautmann, M. (2002). Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets. Critical Care Medicine, 30 (10), 2222–2228. https://doi.org/10.1097/00003246-200210000-00008

  35. Safeyah, A., Maqbul, M. S., & Safeyah, M. (2018). Role of Pseudomonas aeruginosa in nosocomial infection. International Journal of Health Sciences, 6(1), 211–217.

    Google Scholar 

  36. Schmidt T. M. (Eds.). (2019). Encyclopedia of microbiology (4th ed., pp. 127–139). Elsevier. ISBN 978–0–12–811737–8

    Google Scholar 

  37. Spagnolo, A. M., Sartini, M., & Cristina, M. L. (2021). Pseudomonas aeruginosa in the healthcare facility setting. Reviews in Medical Microbiology, 32, 169–175.

    Article  Google Scholar 

  38. The Society for Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Japan. http://yakutai.dept.med.gunma-u.ac.jp/society/QandA.html

  39. Website of “Shiny from R studio”. https://shiny.rstudio.com

  40. Willmann, M., Bezdan, D., & Zapata, L., et al. (2015). Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. Journal of Antimicrobial Chemotherapy, 70(5), 1322–1330. https://doi.org/10.1093/jac/dku546

Download references

Acknowledgements

This research was supported by the research funding of the Institute of Frontier Science and Technology, Okayama University of Science. This paper was proofread in English by Prof. Christopher Carman of the University of Occupational and Environmental Health. Akinori Okada, Prof. Emeritus of the Rikkyo University, gave us advice on an earlier version of this paper. We would like to express our deepest gratitude for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syou Maki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maki, S. et al. (2023). Chronological Monitoring of the Cross-Resistance Rate of Pseudomonas Aeruginosa Classified by the Radius-Distance Model. In: Okada, A., Shigemasu, K., Yoshino, R., Yokoyama, S. (eds) Facets of Behaviormetrics. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-99-2240-6_11

Download citation

Publish with us

Policies and ethics