Skip to main content

Kinetics and Thermodynamic Studies on Pyrolysis Behavior of Plastic Waste Using Thermogravimetric Analysis

  • Conference paper
  • First Online:
Sustainable Energy Generation and Storage (NERC 2022)

Abstract

The purpose of this study was to investigate the thermochemical breakdown of polypropylene grocery bags by using non-isothermal thermogravimetric analysis. The temperature was varied from room temperature to 900 °C in a series of experiments at different heating rates. Differential Friedman method (DFM), an isoconversional model, is utilized in this study to evaluate the kinetic parameters for pyrolysis of polypropylene grocery bags. According to the DFM method, the obtained values of average apparent activation energy (Eα) and pre-exponential factor (k0) were, respectively, 158.98 kJ mol−1 and \(2.16 \times 10^{12}\) min−1. An R2 > 0.98 correlation was found in the conversion range of 0.2–0.8 for DFM technique in the kinetics analysis. The DFM approach determined an average enthalpy change (∆H, kJ/mol) of 153.12 kJ mol−1 at a heating rate of 10 K min−1. Master plots based on the integral form of kinetic data were used to find out the best pyrolysis kinetic model for polypropylene grocery bags. The kinetic process of thermal dehydration of polypropylene was explained by the zero-order reaction mechanism (F0), which was based on the plots between experimentally and theoretically calculated master plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.P. Serrano, J. Aguado, J.M. Escola, Catalytic cracking of a polyolefin mixture over different acid solid catalysts. Ind. Eng. Chem. Res. 39(5), 1177–1184 (2000). https://doi.org/10.1021/ie9906363

    Article  Google Scholar 

  2. I. Adam, T.R. Walker, J.C. Bezerra, A. Clayton, Policies to reduce single-use plastic marine pollution in West Africa. Mar. Policy 116, 103928 (2020). https://doi.org/10.1016/J.MARPOL.2020.103928

    Article  Google Scholar 

  3. S. Vyazovkin, D. Dollimore, Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids (1996)

    Google Scholar 

  4. S. Singh, J. Prasad Chakraborty, M. Kumar Mondal, Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel. 259 (2020). https://doi.org/10.1016/j.fuel.2019.116263

  5. D. Rammohan, N. Kishore, R.V.S. Uppaluri, Insights on kinetic triplets and thermodynamic analysis of delonix regia biomass pyrolysis. Bioresour. Technol. 127375 (2022). https://doi.org/10.1016/J.BIORTECH.2022.127375

  6. D. Rammohan, N. Kishore, R.V.S. Uppaluri, Reaction kinetics and thermodynamic analysis of non-isothermal co-pyrolysis of Delonix regia and tube waste. Bioresour. Technol. Reports 18, 101032 (2022). https://doi.org/10.1016/J.BITEB.2022.101032

    Article  Google Scholar 

  7. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6(1), 183–195 (2007). https://doi.org/10.1002/polc.5070060121

  8. V. Dhyani, J. Kumar, T. Bhaskar, Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour. Technol. 245, 1122–1129 (2017). https://doi.org/10.1016/J.BIORTECH.2017.08.189

    Article  Google Scholar 

  9. L.A. Pérez-Maqueda, J.M. Criado, P.E. Sánchez-Jiménez, Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J. Phys. Chem. A 110(45), 12456–12462 (2006). https://doi.org/10.1021/jp064792g

    Article  Google Scholar 

  10. Y. Chen, Q. Wang, Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym. Degrad. Stab. 92(2), 280–291 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.11.004

    Article  Google Scholar 

  11. P.K. Roy, P. Surekha, C. Rajagopa, V. Choudhary, Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polym. Lett. 1(4), 208–216 (2007). https://doi.org/10.3144/expresspolymlett.2007.32

    Article  Google Scholar 

  12. L.T. Vlaev, V.G. Georgieva, S.D. Genieva, Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J. Therm. Anal. Calorim. 88(3), 805–812 (2007). https://doi.org/10.1007/s10973-005-7149-y

    Article  Google Scholar 

  13. G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. 11(3), 445–447 (1977). https://doi.org/10.1007/BF01903696

    Article  Google Scholar 

  14. A. Aboulkas, K. El harfi, A. El Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers. Manag. 51(7), 1363–1369 (2010). https://doi.org/10.1016/J.ENCONMAN.2009.12.017

  15. S.M. Al-Salem, P. Lettieri, Kinetic study of high density polyethylene (HDPE) pyrolysis. Chem. Eng. Res. Des. 88(12), 1599–1606 (2010). https://doi.org/10.1016/J.CHERD.2010.03.012

    Article  Google Scholar 

  16. P. Das, P. Tiwari, Thermal degradation kinetics of plastics and model selection. Thermochim. Acta 654, 191–202 (2017). https://doi.org/10.1016/J.TCA.2017.06.001

    Article  Google Scholar 

  17. G. Singh, A.K. Varma, S. Almas, A. Jana, P. Mondal, J. Seay, Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization. J. Mater. Cycles Waste Manag. 21(6), 1350–1360 (2019). https://doi.org/10.1007/s10163-019-00891-9

    Article  Google Scholar 

  18. Y. Xu, B. Chen, Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146, 485–493 (2013). https://doi.org/10.1016/J.BIORTECH.2013.07.086

    Article  Google Scholar 

  19. L. Vlaev, I. Markovska, L. Lyubchev, Non-isothermal kinetics of pyrolysis of rice husk. Thermochim. Acta 406(1–2), 1–7 (2003). https://doi.org/10.1016/S0040-6031(03)00222-3

    Article  Google Scholar 

  20. A.K. Vuppaladadiyam, N. Merayo, P. Prinsen, R. Luque, A. Blanco, M. Zhao, A review on greywater reuse: quality, risks, barriers and global scenarios. Rev. Environ. Sci. Bio/Technology 18(1), 77–99 (2019). https://doi.org/10.1007/s11157-018-9487-9

    Article  Google Scholar 

  21. S.S. Ghadikolaei, A. Omrani, M. Ehsani, Non-isothermal degradation kinetics of ethylene-vinyl acetate copolymer nanocomposite reinforced with modified bacterial cellulose nanofibers using advanced isoconversional and master plot analyses. Thermochim. Acta 655, 87–93 (2017). https://doi.org/10.1016/J.TCA.2017.06.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Reddy Annapureddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Annapureddy, P.K.R., Rammohan, D., Kishore, N. (2023). Kinetics and Thermodynamic Studies on Pyrolysis Behavior of Plastic Waste Using Thermogravimetric Analysis. In: Moholkar, V.S., Mohanty, K., Goud, V.V. (eds) Sustainable Energy Generation and Storage. NERC 2022. Springer, Singapore. https://doi.org/10.1007/978-981-99-2088-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2088-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2087-7

  • Online ISBN: 978-981-99-2088-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics