Skip to main content

Enhanced Sampling and Free Energy Methods to Study Protein Folding and Dynamics

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability

Abstract

A virtual study of the physical and chemical behaviour of particles in the energy space is referred to as computer simulation. The interaction of biomolecules and atoms during conformational changes is studied through molecular dynamics (MD) simulation. MD simulation complements the experimental results by providing a theoretical perspective of the real-time environment. However, the sampling of configuration is limited to a definite timescale due to free energy barriers. This free energy barrier arises due to the energy gap between initial and closing entropy in biomolecular structural transition. To deal with this biophysical problem, various enhanced sampling methods have been developed that are classified into collective variable-based and collective variable-free approaches based on the algorithm of the sampling method. This chapter discusses the numerical aspects of sampling methods, followed by a review of some of the most commonly used techniques in MD simulation and enhanced sampling. Lastly, a combined enhanced sampling method has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.B. Anfinsen, Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  CAS  PubMed  Google Scholar 

  2. P.D. Sun, C.E. Foster, J.C. Boyington, Overview of protein structural and functional folds. Curr. Protoc. Protein Sci. Chapter 17(1), Unit 17.1 (2004). https://doi.org/10.1002/0471140864.ps1701s35

    Article  PubMed  Google Scholar 

  3. S.K. Tripathi, C. Selvaraj, S.K. Singh, K.K. Reddy, Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med. Chem. Res. 21(12), 4239–4251 (2012)

    Article  CAS  Google Scholar 

  4. J.C. Smith, G.R. Kneller, Combination of neutron scattering and molecular dynamics to determine internal motions in biomolecules. Mol. Simul. 10(2–6), 363–375 (1993). https://doi.org/10.1080/08927029308022173

    Article  CAS  Google Scholar 

  5. P. Vijayalakshmi, C. Selvaraj, S.K. Singh, J. Nisha, K. Saipriya, P. Daisy, Exploration of the binding of DNA binding ligands to Staphylococcal DNA through QM/MM docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 31(6), 561–571 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. E.I. Shakhnovich, Proteins with selected sequences fold into unique native conformation. Phys. Rev. Lett. 72(24), 3907 (1994)

    Article  CAS  PubMed  Google Scholar 

  7. T. Komatsu et al., Real-time measurements of protein dynamics using fluorescence activation-coupled protein labeling method. J. Am. Chem. Soc. 133(17), 6745–6751 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Miao, J.A. McCammon, Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol. Simul. 42(13), 1046–1055 (2016). https://doi.org/10.1080/08927022.2015.1121541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Chu, Y. Wang, P. Tian, W. Li, D. Mercadante, Editorial: advanced sampling and modeling in molecular simulations for slow and large-scale biomolecular dynamics. Front. Mol. Biosci. 8, 795991 (2021). https://doi.org/10.3389/fmolb.2021.795991

    Article  PubMed  PubMed Central  Google Scholar 

  10. K. Röder, D.J. Wales, The energy landscape perspective: encoding structure and function for biomolecules. Front. Mol. Biosci. 9, 820792 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  11. S. Shaikh, P.-C. Wen, G. Enkavi, Z. Huang, E. Tajkhorshid, Capturing functional motions of membrane channels and transporters with molecular dynamics simulation. J. Comput. Theor. Nanosci. 7(12), 2481–2500 (2010). https://doi.org/10.1166/jctn.2010.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Mitsutake, Y. Mori, Y. Okamoto, Enhanced sampling algorithms. Methods Mol. Biol. 924, 153–195 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. M.P. Allen, Introduction to molecular dynamics simulation. Comput. Soft Matter 23(1), 1–28 (2004)

    Google Scholar 

  14. A. Barducci, M. Bonomi, M. Parrinello, Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(5), 826–843 (2011)

    Article  CAS  Google Scholar 

  15. J.N. Onuchic, H. Nymeyer, A.E. García, J. Chahine, N.D. Socci, The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv. Protein Chem. 53, 87–152 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. R. Khandelwal et al., Structure-based virtual screening for the identification of high-affinity small molecule towards STAT3 for the clinical treatment of osteosarcoma. Curr. Top. Med. Chem. 18(29), 2511–2526 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. C. Selvaraj, S.K. Singh, S.K. Tripathi, K.K. Reddy, M. Rama, In silico screening of indinavir-based compounds targeting proteolytic activity in HIV PR: binding pocket fit approach. Med. Chem. Res. 21(12), 4060–4068 (2012). https://doi.org/10.1007/s00044-011-9941-5

    Article  CAS  Google Scholar 

  18. D. Pradiba, M. Aarthy, V. Shunmugapriya, S.K. Singh, M. Vasanthi, Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. J. Biomol. Struct. Dyn. 36(14), 3718–3739 (2018). https://doi.org/10.1080/07391102.2017.1397058

    Article  CAS  PubMed  Google Scholar 

  19. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins. Nature 450(7172), 964–972 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. K. Patidar et al., Virtual screening approaches in identification of bioactive compounds akin to delphinidin as potential HER2 inhibitors for the treatment of breast cancer. Asian Pacific J. Cancer Prev. 17(4), 2291–2295 (2016)

    Article  Google Scholar 

  21. K.K. Reddy, S.K. Singh, Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Chem. Biol. Interact. 218, 71–81 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. K. Patidar et al., An in silico approach to identify high affinity small molecule targeting m-TOR inhibitors for the clinical treatment of breast cancer. Asian Pacific J. Cancer Prev. 20(4), 1229 (2019)

    Article  CAS  Google Scholar 

  23. S.S. Plotkin, J.N. Onuchic, Understanding protein folding with energy landscape theory part I: basic concepts. Q. Rev. Biophys. 35(2), 111–167 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. S. Vijayakumar, P. Manogar, S. Prabhu, R.A. Sanjeevkumar Singh, Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. J. Pharm. Anal. 8(6), 413–420 (2018). https://doi.org/10.1016/j.jpha.2017.07.006

    Article  PubMed  Google Scholar 

  25. D.S. Malar, V. Suryanarayanan, M.I. Prasanth, S.K. Singh, K. Balamurugan, K.P. Devi, Vitexin inhibits Aβ25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-α. Toxicol. In Vitro 50, 160–171 (2018). https://doi.org/10.1016/j.tiv.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  26. Y. Inagaki, Generalized simulated annealing algorithms using Tsallis statistics: application to the discrete-time optimal growth problem. Rev. Econ. Bus. Admin. 37(2), 1–11 (2007)

    Google Scholar 

  27. S. Sharda et al., A virtual screening approach for the identification of high affinity small molecules targeting BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia. Curr. Top. Med. Chem. 17(26), 2989–2996 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  CAS  PubMed  Google Scholar 

  29. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13(8), 1011–1021 (1992). https://doi.org/10.1002/jcc.540130812

    Article  CAS  Google Scholar 

  30. H. Szu, R. Hartley, Fast simulated annealing. Phys. Lett. A 122(3–4), 157–162 (1987)

    Article  Google Scholar 

  31. H. Zang, S. Zhang, K. Hapeshi, A review of nature-inspired algorithms. J. Bionic Eng. 7(4), S232–S237 (2010)

    Article  Google Scholar 

  32. K. Hamacher, W. Wenzel, Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape. Phys. Rev. E 59(1), 938 (1999)

    Article  CAS  Google Scholar 

  33. A. Laio, M. Parrinello, Escaping free-energy minima. Proc. Natl. Acad. Sci. 99(20), 12562–12566 (2002). https://doi.org/10.1073/pnas.202427399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23(2), 187–199 (1977). https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  35. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  CAS  PubMed  Google Scholar 

  36. C. Chen, Y. Huang, Y. Xiao, Enhanced sampling of molecular dynamics simulation of peptides and proteins by double coupling to thermal bath. J. Biomol. Struct. Dyn. 31(2), 206–214 (2013). https://doi.org/10.1080/07391102.2012.698244

    Article  CAS  PubMed  Google Scholar 

  37. C. Selvaraj et al., Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem. Eng. J. 114, 244–256 (2016). https://doi.org/10.1016/j.bej.2016.07.008

    Article  CAS  Google Scholar 

  38. M.D. De Andrade, M.A.C. Nascimento, K.C. Mundim, A.M.C. Sobrinho, L.A.C. Malbouisson, Atomic basis sets optimization using the generalized simulated annealing approach: new basis sets for the first row elements. Int. J. Quantum Chem. 108(13), 2486–2498 (2008)

    Article  Google Scholar 

  39. K.C. Mundim, C. Tsallis, Geometry optimization and conformational analysis through generalized simulated annealing. Int. J. Quantum Chem. 58(4), 373–381 (1996)

    Article  CAS  Google Scholar 

  40. S.S. da Rocha Pita, T.V.A. Fernandes, E.R. Caffarena, P.G. Pascutti, Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing. Int. J. Quantum Chem. 108(13), 2608–2614 (2008)

    Article  Google Scholar 

  41. S. Bandaru et al., Identification of small molecule as a high affinity β2 agonist promiscuously targeting wild and mutated (Thr164Ile) β 2 adrenergic receptor in the treatment of bronchial asthma. Curr. Pharm. Des. 22(34), 5221–5233 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. M.C.R. Melo, R.C. Bernardi, T.V.A. Fernandes, P.G. Pascutti, GSAFold: a new application of GSA to protein structure prediction. Proteins Struct. Funct. Bioinform. 80(9), 2305–2310 (2012)

    Article  CAS  Google Scholar 

  43. M.A. Moret, P.M. Bisch, K.C. Mundim, P.G. Pascutti, New stochastic strategy to analyze helix folding. Biophys. J. 82(3), 1123–1132 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M.A. Moret, P.G. Pascutti, P.M. Bisch, K.C. Mundim, Stochastic molecular optimization using generalized simulated annealing. J. Comput. Chem. 19(6), 647–657 (1998)

    Article  CAS  Google Scholar 

  45. Y. Xiang, X.G. Gong, Efficiency of generalized simulated annealing. Phys. Rev. E 62(3), 4473 (2000)

    Article  CAS  Google Scholar 

  46. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  Google Scholar 

  47. C. Abrams, G. Bussi, Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16(1), 163–199 (2014)

    Article  Google Scholar 

  48. G. Helles, A comparative study of the reported performance of ab initio protein structure prediction algorithms. J. R. Soc. Interface 5(21), 387–396 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. M. Majhi et al., An in silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Curr. Top. Med. Chem. 18(27), 2355–2366 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. L. Wang, R.A. Friesner, B.J. Berne, Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 115(30), 9431–9438 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. G. Bussi, Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol. Phys. 112(3–4), 379–384 (2014)

    Article  CAS  Google Scholar 

  52. D. Hamelberg, J. Mongan, J.A. McCammon, Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120(24), 11919–11929 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. L.-H. Hung, S.-C. Ngan, T. Liu, R. Samudrala, PROTINFO: new algorithms for enhanced protein structure predictions. Nucleic Acids Res. 33(Suppl 2), W77–W80 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D.C. Rapaport, D.C.R. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  55. D. Hamelberg, J.A. McCammon, Fast peptidyl cis-trans isomerization within the flexible gly-rich flaps of HIV-1 protease. J. Am. Chem. Soc. 127(40), 13778–13779 (2005)

    Article  CAS  PubMed  Google Scholar 

  56. P.R.L. Markwick, G. Bouvignies, M. Blackledge, Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J. Am. Chem. Soc. 129(15), 4724–4730 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. B. Zhao, M.A. Cohen Stuart, C.K. Hall, Navigating in foldonia: using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide. PLoS Comput. Biol. 13(3), e1005446 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Y. Miao, W. Sinko, L. Pierce, D. Bucher, R.C. Walker, J.A. McCammon, Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J. Chem. Theory Comput. 10(7), 2677–2689 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S.F. Sousa, P.A. Fernandes, M.J. Ramos, Protein–ligand docking: current status and future challenges. Proteins Struct. Funct. Bioinform. 65(1), 15–26 (2006)

    Article  CAS  Google Scholar 

  60. R. Shukla, T. Tripathi, Molecular dynamics simulation of protein and protein-ligand complexes, in Computer-Aided Drug Design, ed. by D.B. Singh, (Springer Nature, Singapore, 2020), pp. 133–161

    Chapter  Google Scholar 

  61. R. Shukla, T. Tripathi, Molecular dynamics simulation in drug discovery: opportunities and challenges, in Innovations and Implementations of Drug Discovery Strategies in Rational Drug Design, ed. by S.K. Singh, (Springer Nature, Singapore, 2021), pp. 295–316

    Google Scholar 

  62. K. Prince, S. Sasidharan, N. Nag, T. Tripathi, P. Saudagar, Integration of spectroscopic and computational data to analyze protein structure, function, folding, and dynamics, in Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, ed. by P. Saudagar, T. Tripathi, (Academic Press, San Diego, 2023), pp. 483–502

    Chapter  Google Scholar 

  63. D.B. Singh, T. Tripathi, Frontiers in Protein Structure, Function, and Dynamics (Springer Nature, Singapore, 2020)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research facility provided by Alagappa University. The authors also thank the Department of Biotechnology (DBT-BIC) Project Grant/Award (No.BT/PR40154/BTIS/137/34/2021), RUSA-Phase 2.0 Policy (TNmulti-Gen), Dept. of Edn, Govt. of India (Grant No: F.24-51/2014-U), Department of Biotechnology (DBT), New Delhi Grant/Award (No.BT/PR40154/BTIS/137/34/2021), The Higher Education, Govt. of Tamil Nadu for the Grant (No. 5594/H1/2020-1), The Tamil Nadu State Council for Higher Education (TANSCHE) for the research grant (Au/S.o. (P&D): TANSCHE Projects: 117/2021), DST-PURSE 2nd Phase Programme Order no. SR/PURSE phase 2/28 (G dated 21.02.2017) and FIST (SR/FST/LSI—667/2016) for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pravin, M.A., Singh, S.K. (2023). Enhanced Sampling and Free Energy Methods to Study Protein Folding and Dynamics. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_9

Download citation

Publish with us

Policies and ethics