Skip to main content

Mechanical and Thermo-physical Properties of Rare-Earth Materials

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 886 Accesses

Abstract

The ultrasonic nondestructive technique (US-NDT) is the mostly preferred technique for material characterization. It has gained much attention in the area of materials science as there is no impairment of properties and does not affect the future usefulness of the sample under testing. The ultrasonic techniques are the versatile tools to investigate the material properties such as microstructure, elastic modulus, and grain size and the mechanical properties, velocity, attenuation, etc. This field has evolved mainly in the last few decades and is involved in developing new materials and modifying available materials by gaining a better understanding of characteristics under different physical conditions. These materials are thus referred to as condensed materials which have proven their potentials in many applications. Out of emerging materials, the exceptional structural, elastic, electrical, magnetic, phonon, and thermal characteristics of rare-earth compounds have attracted attention, as they are of technological significance. These materials crystallize into a basic NaCl structure, making them interesting samples for experimental and theoretical study. One of the most important reasons for the theoretical investigation of rare-earth compounds was the existence of a single crystal of chosen materials. After it was demonstrated that some rare-earth compounds can be grown epitaxially on III-V semiconductors, the interest in these materials has expanded even more recently. It has paved the path for their use in the manufacturing industry, infrared detectors, optoelectronic devices, spintronics, and several research domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhiezer AI (1939) On the sound absorption in solids. J Phys 1:277–287

    MATH  Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  • Bala J, Singh SP, Verma AK, Singh DK, Singh D (2022) Elastic, mechanical and ultrasonic studies of boron monopnictides in two different structural phases. Indian J Phys 36:1–10

    ADS  Google Scholar 

  • Balageas D, Maldague X, Burleigh D, Vavilov VP, Oswald-Tranta B, Roche JM, Pradere C, Carlomagno GM (2016) Thermal (IR) and other NDT techniques for improved material inspection. J Nondestruct Eval 35(1):1–17

    Article  Google Scholar 

  • Barrett HH, Holland MG (1970) Critique of current theories of Akhieser damping in solids. Phys Rev B 1(6):2538

    Article  ADS  Google Scholar 

  • Bedford A, Drumheller DS (1994) Elastic wave propagation. Wiley, Chichester

    MATH  Google Scholar 

  • Berman R (1976) Thermal conductivity in solids. Clarendon, Oxford, UK

    Google Scholar 

  • Bhalla V, Kumar R, Tripathy C, Singh D (2013) Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study. Int J Mod Phys B 27:1350116

    Article  ADS  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71(11):809

    Article  ADS  MATH  Google Scholar 

  • Blackman M (1955) The specific heat of solids. In: Handbuch der Physik. Springer, Berlin/Heidelberg, pp 325–382

    Google Scholar 

  • Bömmel HE, Dransfeld K (1960) Excitation and attenuation of hypersonic waves in quartz. Phys Rev 117(5):1245

    Article  ADS  Google Scholar 

  • Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic Press, London

    Google Scholar 

  • Born M (1940) On the stability of crystal lattices. Math Proc Camb Philos Soc 36(2):160–172

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Brugger K (1964) Thermodynamic definition of higher order elastic coefficients. Phys Rev 133:A1611–A1612

    Article  ADS  MATH  Google Scholar 

  • Brugger K (1965) Generalized Grüneisen parameters in the anisotropic Debye model. Phys Rev 137(6A):A1826

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46(10):6131

    Article  ADS  Google Scholar 

  • Chandrasekaran V (2020) Ultrasonic testing handbook. Guide for Ultrasonic Testing. Advanced Quality Centre

    Google Scholar 

  • Ching WY, Rulis P, Misra A (2009) Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater 5(8):3067–3075

    Article  Google Scholar 

  • Cousins CSG (1967) The third-order elastic shear constants of face-centred cubic and body-centred cubic metals. Proc Phys Soc 91(1):235

    Article  ADS  Google Scholar 

  • Cousins CSG (1971) New relations between elastic constants of different orders under central force interactions. J Phys C Solid State Phys 4(10):1117

    Article  ADS  Google Scholar 

  • Cowley RA (1963) The lattice dynamics of an anharmonic crystal. Adv Phys 12(48):421–480

    Article  ADS  Google Scholar 

  • Decius JC, Hexter RM (1977) Molecular vibrations in crystals. McGraw-Hill, New York

    Google Scholar 

  • Gray DE (1972) American Institute of Physics handbook, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Duan CG, Sabirianov RF, Mei WN, Dowben PA, Jaswal SS, Tsymbal EY (2007) Electronic, magnetic and transport properties of rare-earth monopnictides. J Phys Condens Matt 19(31): 315220

    Google Scholar 

  • Grosse CU (2013) Evolution of NDT methods for structures and materials: some successes and failures. In: Nondestructive testing of materials and structures. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res 17(5):1268–1272

    Article  Google Scholar 

  • Hajlaoui C, Pedesseau L, Raouafi F, Larbi FBC, Even J, Jancu JM (2015) Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase. J Exp Theor Phys 121(2):246–249

    Article  ADS  Google Scholar 

  • Herring C (1954) Role of low-energy phonons in thermal conduction. Phys Rev 95(4):954

    Article  ADS  MATH  Google Scholar 

  • Hiki Y (1981) Higher order elastic constants of solids. Annu Rev Mater Sci 11(1):51–73

    Article  ADS  Google Scholar 

  • Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65:349–354

    Article  ADS  Google Scholar 

  • Jyoti B, Triapthi S, Singh SP, Singh DK, Singh D (2021) Elastic, mechanical, thermo-physical, and ultrasonic investigation in platinum carbide. Mater Today Commun 27:102189

    Google Scholar 

  • Klemens PG, Mason WP (1965) Physical acoustics, vol IIIB. Academic Press, New York, pp 237–285

    Google Scholar 

  • Kumar A, Jayakumar T, Raj B, Ray KK (2003) Correlation between ultrasonic shear wave velocity and Poisson’s ratio for isotropic solid materials. Acta Mater 51(8):2417–2426

    Article  ADS  Google Scholar 

  • Kumar R, Singh D, Tripathi S (2012) Crystal anharmonicity in strontium monochalcogenides. Asian J Chem 24:5652

    Google Scholar 

  • Love AEH (1927) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge, MA

    MATH  Google Scholar 

  • Mason WP (1960) Piezoelectric crystals and their application to ultrasonics. Van Nostrand, Princeton, p 479

    Google Scholar 

  • Mason WP (1967) Relation between thermal ultrasonic attenuation and third-order elastic moduli for waves along the <110> axis of a crystal. J Acoust Soc Am 42(1):253–257

    Article  ADS  Google Scholar 

  • Mason WP, Rosenberg A (1966) Phonon and electron drag coefficients in single-crystal aluminum. Phys Rev 151(2):434

    Article  ADS  Google Scholar 

  • Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour Policy 38(1):36–43

    Article  Google Scholar 

  • Meradji H, Drablia S, Ghemid S, Belkhir H, Bouhafs B, Tadjer A (2004) First-principles elastic constants and electronic structure of BP, BAs, and BSb. Phys Status Solidi B 241(13):2881–2885

    Article  ADS  Google Scholar 

  • Moeller T (1970) Periodicity and the lanthanides and actinides. J Chem Educ 47(6):417

    Article  Google Scholar 

  • Mori S, Hiki Y (1978) Calculation of the third-and fourth-order elastic constants of alkali halide crystals. J Phys Soc Jpn 45(5):1449–1456

    Article  ADS  Google Scholar 

  • Nanekar PP, Shah BK (2003) Characterization of material properties by ultrasonics. In: National Seminar on Non-Destructive Evaluation, NDE. BARC Newsletter 249:25–38

    Google Scholar 

  • Natali F, Ruck BJ, Plank NO, Trodahl HJ, Granville S, Meyer C, Lambrecht WR (2013) Rare-earth mononitrides. Progress in Mater Sci 58(8):1316–1360

    Google Scholar 

  • Nava R, Romero J (1978) Ultrasonic Grüneisen parameter for nonconducting cubic crystals. J Acoust Soc Am 64(2):529–532

    Article  ADS  Google Scholar 

  • Petit L, Tyer R, Szotek Z, Temmerman WM, Svane A (2010) Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials. New J Phys 12(11):113041

    Google Scholar 

  • Philip J, Breazeale MA (1983) Third-order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300° K. J Appl Phys 54(2):752–757

    Article  ADS  Google Scholar 

  • Raj B (2000) NDT for realising better quality of life in emerging economies like India. In: Proceedings of 15th world conference on NDT, Roma

    Google Scholar 

  • Reuss A (1929) Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z Angew Math Mech 9:49–58

    Article  Google Scholar 

  • Singh D (2014) Engineering physics, vol 1, 4th edn. Dhanpat Rai & Co., New Delhi

    Google Scholar 

  • Singh D, Kumar R, Pandey DK (2011) Temperature and orientation dependence of ultrasonic parameters in americium monopnictides. Adv Mater Phys Chem 1(2):31

    Article  Google Scholar 

  • Slack GA (1973) Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids 34(2):321–335

    Article  ADS  Google Scholar 

  • Slack GA (1979) The thermal conductivity of nonmetallic crystals. Solid State Phys 34:1–71

    Article  Google Scholar 

  • Stone A (2013) The theory of intermolecular forces. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Stoner RJ, Morath CJ, Guray T, Robin M, Merchant SM, Maris HJ (2001) Recent progress in picosecond ultrasonic process metrology. AIP Conf Proc 550(1):468–477

    Article  ADS  Google Scholar 

  • Thurston RN, Brugger K (1964) Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys Rev 133(6A):A1604

    Article  ADS  MATH  Google Scholar 

  • Vary A (1980) Concepts and techniques for ultrasonic evaluation of material mechanical properties. In: Mechanics of non-destructive testing. Springer, New York, pp 123–141

    Chapter  Google Scholar 

  • Voigt W (1966) Lehrbuch der Kristallphysik. Teubner, Leipzig, 1910. (Reprinted (1928) with an additional appendix, Leipzig, Teubner (Johnson Reprint, New York))

    Google Scholar 

  • Wang SQ, Ye HQ (2003) First-principles study on elastic properties and phase stability of III–V compounds. Phys Status Solidi B 240(1):45–54

    Article  ADS  Google Scholar 

  • Woodruff TO, Ehrenreich H (1961) Absorption of sound in insulators. Phys Rev 123(5):1553

    Article  ADS  MATH  Google Scholar 

  • Xiang Y, Deng M, Xuan FZ (2014) Creep damage characterization using nonlinear ultrasonic guided wave method: a mesoscale model. J App Phys 115(4):044914

    Article  ADS  Google Scholar 

  • Yamanaka K, Noguchi A, Tsuji T, Koike T, Goto T (1999) Quantitative material characterization by ultrasonic AFM. Surf Interface Anal 27(5–6):600–606

    Article  Google Scholar 

  • Zhang Z, Wang P, Wang N, Wang X, Xu P, Li L (2020) Structural and cryogenic magnetic properties of rare earth rich RE 11 Co 4 In 9 (RE = Gd, Dy and Ho) intermetallic compounds. Dalton Trans 49(25):8764–8773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Appendices

Appendix A

Table A1 Non-linearity parameters along different crystallographic directions

Direction

<100>

<110>

<111>

K2

C11

\( \frac{1}{2}\left({C}_{11}+{C}_{12}+2{C}_{44}\right) \)

\( \frac{1}{3}\left({C}_{11}+2{C}_{12}+4{C}_{44}\right) \)

K3

C111

\( \frac{1}{4}\left({C}_{111}+3{C}_{112}+12{C}_{166}\right) \)

\( \frac{1}{9}\left({C}_{111}+6{C}_{112}+12{C}_{144}+24{C}_{166}+2{C}_{123}+16{C}_{456}\right) \)

Appendix B

Table B1 Equations for Grüneisen numbers along <100> for longitudinal waves

Type of wave

No. of modes

Equations for <\( {\upgamma}_i^j \) >

Longitudinal

1

\( \frac{3{C}_{11}+{C}_{111}}{2{C}_{11}} \)

Shear

2

\( \frac{C_{11}+{C}_{166}}{2{C}_{44}} \)

Longitudinal

2

\( \frac{C_{11}+{C}_{112}}{2{C}_{11}} \)

Shear

2

\( \frac{2{C}_{44}+{C}_{12}+{C}_{166}}{2{C}_{44}} \)

Shear

2

\( \frac{C_{12}+{C}_{144}}{2{C}_{44}} \)

Longitudinal

2

\( \frac{2{C}_{12}+{C}_{112}+2{C}_{144}+{C}_{123}}{2\left({C}_{11}+{C}_{12}+2{C}_{44}\right)} \)

Shear

2

\( \frac{2{C}_{12}+{C}_{112}-{C}_{123}}{2\left({C}_{11}-{C}_{12}\right)} \)

Shear

2

\( \frac{C_{12}+2{C}_{44}+{C}_{166}}{2{C}_{44}} \)

Longitudinal

4

\( \frac{2\left({C}_{11}+{C}_{12}+{C}_{44}\right)+{C}_{111}/2+3{C}_{112}/2+2{C}_{166}}{2\left({C}_{11}+{C}_{12}+2{C}_{44}\right)} \)

Shear

4

\( \frac{2{C}_{11}+\left({C}_{111}-{C}_{112}\right)/2}{2\left({C}_{11}-{C}_{12}\right)} \)

Shear

4

\( \frac{C_{11}+{C}_{12}+{C}_{144}+{C}_{166}}{4{C}_{44}} \)

Longitudinal

4

\( \frac{5{C}_{11}+10{C}_{12}+8{C}_{44}+{C}_{111}+6{C}_{112}+2{C}_{123}+4{C}_{144}+8{C}_{166}}{6\left({C}_{11}+2{C}_{12}+4{C}_{44}\right)} \)

Shear

4

\( \frac{4{C}_{11}+5{C}_{12}+{C}_{44}+\left({C}_{111}+3{C}_{112}\right)/2+\left({C}_{144}+5{C}_{166}\right)/2-2{C}_{123}}{6\left({C}_{11}-{C}_{12}+{C}_{44}\right)} \)

Shear

4

\( \frac{2{C}_{11}+{C}_{12}+{C}_{44}+\left({C}_{111}-{C}_{112}\right)/2+\left({C}_{144}+{C}_{166}\right)/2}{2\left({C}_{11}-{C}_{12}+{C}_{44}\right)} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bhalla, V., Singh, D. (2023). Mechanical and Thermo-physical Properties of Rare-Earth Materials. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_40

Download citation

Publish with us

Policies and ethics