Skip to main content

Artificial Intelligence for Iris-Based Diagnosis in Healthcare

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 848 Accesses

Abstract

Computers are now able to play a role in the diagnostic process for diabetes patients because of developments in the disciplines of medical imaging and information technology. It is difficult to reduce death rates to more reasonable levels by employing early and precise detection approaches. When seeking to identify risk factors for complications, acute and long-term difficulties, mortality, and medical care expenses, data on the prevalence and incidence of diabetes and prediabetes is important. The International Diabetes Federation estimates the occurrence of diabetes based on the present status and prevalence of diabetes worldwide. In addition, variables, such as physiological markers, that may have a role in the development of diabetes are investigated. Complementary and alternative methods, especially iris-based diagnostics, have made significant advances in the identification of diabetes and associated disorders. Diabetes is a leading cause of renal failure globally. It raises the likelihood of heart and blood vessel problems. Diabetic kidney disease is a chronic condition. The blood test is used to identify diabetic kidney disease, which is a difficult and agitating treatment for patients. This chapter combines iridology with current computer-based approaches to diagnose diabetic kidney disease. A total of 130 participants were assessed and categorized based on their health status, such as not having diabetes, having diabetes but not having diabetic kidney disease, and having diabetic kidney disease. Pre-image processing methods are used to extract the region of interest from the iris based on the iridology chart’s specified regions. The region of interest was analyzed for first-order statistical and second-order textual characteristics. Finally, several categorization models were examined using different sets of characteristics to discover the optimum model. The maximum accuracy of 94.4% was achieved with the help of a fine Gaussian kernel of the SVM classifier. It is empirically demonstrated that features of specific areas of the iris are highly correlated with the diabetic kidney disease condition of an individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anjana RM, Ali MK, Pradeepa R, Deepa M, Datta M, Unnikrishnan R (2011) The need for obtaining accurate nationwide estimates of diabetes prevalence in India – rationale for a national study on diabetes. Indian J Med Res 133:369–380

    Google Scholar 

  • Aschner P, Aguilar Carlos S, Aguirre L, Franco L, Gagliardino JJ, Lapertosa SG, Seclen S, Vinocour M (2014) Diabetes in South and Central America: an update. Diabetes Res Clin Pract 103:238–243

    Article  Google Scholar 

  • Astin JA (1998) Why patients use alternative medicine: results of a national study. JAMA 279:1548–1553

    Article  Google Scholar 

  • Baier LJ, Hanson RL (2004) Genetic studies of the etiology of type 2 diabetes in Pima Indians. Perspect Diabetes 53:1181–1186

    Google Scholar 

  • Bansal A, Agarwal R, Sharma RK (2014) Predicting gender using iris images. Res J Recent Sci 3:20–26

    Google Scholar 

  • Bansal A, Agarwal R, Sharma RK (2015) Determining diabetes using iris recognition system. Int J Diabetes Dev Ctries 35:432–438

    Article  Google Scholar 

  • Banzi JF, Zhaojun X (2015) An automated tool for non-contact, real time early detection of diabetes by computer vision. Int J Mach Learn Comput 5:225–229

    Article  Google Scholar 

  • Beagley J, Guariguata L, Weil C, Motala A (2014) Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract 103:150–160. Elsevier Ireland Ltd

    Article  Google Scholar 

  • Bhushan P, Kalpana J, Arvind C (2005) Classification of human population based on HLA gene polymorphism and the concept of Prakriti in Ayurveda. J Altern Complement Med 11:349–353

    Article  Google Scholar 

  • Calvo RA et al (2017) Natural language processing in mental health applications using non-clinical texts. Nat Lang Eng 23:649–685. Cambridge University Press

    Article  Google Scholar 

  • Chan JCN et al (2013) Diabetes in the Western Pacific region – past, present and future. Diabetes Res Clin Pract 103:244–255

    Article  Google Scholar 

  • Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Publ Group 8:228–236

    Google Scholar 

  • Cho NH, Shaw JE, Karuranga S et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  Google Scholar 

  • Corp N, Jordan JL, Croft PR (2018) Justifications for using complementary and alternative medicine reported by persons with musculoskeletal conditions: a narrative literature synthesis. PLoS One 13:e0200879

    Article  Google Scholar 

  • Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14:715–739

    Article  Google Scholar 

  • Deng L, Liu Y (2018) Deep learning in natural language processing. Springer International Publishing, pp 1–327

    Google Scholar 

  • Diabetes I D F Group (2015) Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2013. Diabetes Res Clin Pract 109:461–474. Elsevier Ireland Ltd

    Article  Google Scholar 

  • Dwivedi AK (2017) Analysis of computational intelligence techniques for diabetes mellitus prediction. Neural Comput & Applic 30:3837–3845

    Article  Google Scholar 

  • Eisenberg DM et al (1998) Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA 280:1569–1575

    Article  Google Scholar 

  • Fernandes R, Ogurtsova K, Linnenkamp U (2016) IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 117:48. https://doi.org/10.1016/j.diabres.2016.04.016. Elsevier Ltd

    Article  Google Scholar 

  • Ferrer RL (2007) Pursuing equity: contact with primary care and specialist clinicians by demographics, insurance, and health status. Ann Fam Med 5:492–502

    Article  ADS  Google Scholar 

  • Fewell Z (2005) Statistical evaluation of measurement errors: design and analysis of reliability studies. Int J Epidemiol 34:499–499. Oxford Academic

    Article  Google Scholar 

  • Fitzpatrick R et al (1998) Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess 2:1–74

    Article  Google Scholar 

  • Fonseca VA (2009) Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32:151–156

    Article  Google Scholar 

  • Ghodke Y et al (2007) Genetic polymorphism of CYP2C19 in Maharashtrian population. Eur J Epidemiol 22:907–915

    Article  Google Scholar 

  • Ghosh P (2022) The fundamentals of natural language processing and natural language generation – DATAVERSITY. Springer. Available at: https://www.dataversity.net/fundamentals-natural-language-processing-natural-language-generation/

  • Guariguata L (2012) New estimates from the IDF Diabetes Atlas update for 2012. Diabetes Res Clin Pract 98:522–525

    Article  Google Scholar 

  • Guariguata L et al (2011) The International Diabetes Federation Diabetes Atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract 94:322–332

    Article  Google Scholar 

  • Guariguata L et al (2013a) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    Article  Google Scholar 

  • Guariguata L, Linnenkamp U, Beagley J (2013b) Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103:176–185

    Article  Google Scholar 

  • Heydari M, Teimouri M, Heshmati Z (2015) Comparison of various classification algorithms in the diagnosis of type 2 diabetes in Iran. Int J Diabetes Dev Ctries 36:167–173

    Article  Google Scholar 

  • Hsu PC et al (2019) The tongue features associated with type 2 diabetes mellitus. Medicine 98:19. Wolters Kluwer Health

    Article  Google Scholar 

  • Hussein SE, Hassan OA, Granat MH (2013) Assessment of the potential iridology for diagnosing kidney disease using wavelet analysis and neural networks. Biomed Signal Process Control 8:534–541

    Article  Google Scholar 

  • IDF Diabetes Atlas Group (2013) Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2011. Diabetes Res Clin Pract 103:277–279

    Google Scholar 

  • Jensen B (2011) Iridology simplified, 5th edn. Iridologists International

    Google Scholar 

  • Jiang M et al (2012) Syndrome differentiation in modern research of traditional Chinese medicine. J Ethnopharmacol 140:634–642

    Article  Google Scholar 

  • Kaveeshwar SA, Cornwall J (2014) The current state of diabetes mellitus in India. Australas Med J 7:45–48

    Article  Google Scholar 

  • Kayaer K, Yildirim T (2003) Medical diagnosis on Pima Indian diabetes using general regression neural networks. In: Proceedings of the international conference on artificial neural networks and neural information processing, pp 181–184

    Google Scholar 

  • Kulikowski CA (2019) Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting scientific inquiry and clinical art – with reflections on present AIM Challenges. Yearb Med Inform 28:249–256

    Article  Google Scholar 

  • Kumar S et al (2011) Diabetes in India: a long way to go. Int J Sci Rep 1:92–98

    Google Scholar 

  • Kumar A et al (2013) India towards diabetes control: key issues. Australas Med J 6:524–531

    Article  Google Scholar 

  • Kumar PVG, Deshpande S, Nagendra HR (2019) Traditional practices and recent advances in Nadi Pariksha: a comprehensive review. J Ayurveda Integr Med 10:308

    Article  Google Scholar 

  • Kurande V et al (2013) Interrater reliability of diagnostic methods in traditional Indian ayurvedic medicine. Evid Based Complement Alternat Med 2013:658275. eCAM. Hindawi Limited

    Article  Google Scholar 

  • Lesmana IPD, Purnama IKE, Purnomo MH (2011) Abnormal condition detection of pancreatic beta-cells as the cause of diabetes mellitus based on iris image. In: International conference on instrumentation, communication, pp 150–155

    Google Scholar 

  • Levin LA et al (2011) ADLER’S physiology of the eye, 11th edn. Elsevier Health Sciences, London

    Google Scholar 

  • Liang Y, Huang Y, Que B (2022) The founder of diagnostics of traditional Chinese medicine. J Tradit Chin Med Sci 9:93–94

    Google Scholar 

  • Liao PY et al (2014) Diabetes with pyogenic liver abscess – a perspective on tongue assessment in traditional Chinese medicine. Complement Ther Med 22:341–348

    Article  Google Scholar 

  • Liljequist N (1916) The diagnosis from the eye. Iridology

    Google Scholar 

  • Linnenkamp U et al (2013) The IDF Diabetes Atlas methodology for estimating global prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103:186–196

    Article  Google Scholar 

  • Lozano F (2014) Basic theories of traditional Chinese medicine. In: Acupuncture for Pain Management. Springer, New York

    Google Scholar 

  • Ma L et al (2013) Iris-based medical analysis by geometric deformation features. IEEE J Biomed Health Inform 17:223–231

    Article  Google Scholar 

  • Maciocia G, Iovanni (2015) The foundations of Chinese medicine. Elsevier Health Sciences, London, p 126

    Google Scholar 

  • Majeed A et al (2013) Diabetes in the Middle-East and North Africa: an update. Diabetes Res Clin Pract 103:218–222

    Article  Google Scholar 

  • Masek L (2003) Recognition of human iris patterns for biometric identification. University of Western Australia

    Google Scholar 

  • Molassiotis A et al (2005) Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 16:655–663

    Article  Google Scholar 

  • Ogurtsova K et al (2017) IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  Google Scholar 

  • Oluwagbemi O, Jatto A (2019) Implementation of a TCM-based computational health informatics diagnostic tool for Sub-Saharan African students. Inform Med Unlocked 14:43–58

    Article  Google Scholar 

  • Passarella R, Fachrurrozi M (2013) Development of iridology system database for colon disorders identification using image processing. Indian J Biochem Biophys 2:100–103

    Google Scholar 

  • Patterson C et al (2014) Diabetes in the young – a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract 1033:161–175

    Article  Google Scholar 

  • Patwardhan B, Bodeker G (2008) Ayurvedic genomics: establishing a genetic basis for mind-body typologies. J Altern Complement Med 14:571–576

    Article  Google Scholar 

  • Patwardhan B et al (2005) Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med 2:465–473

    Article  Google Scholar 

  • Peer N et al (2013) Diabetes in the Africa region: an update. Diabetes Res Clin Pract 103:197–205

    Article  Google Scholar 

  • Pesek DJ (2016) Holistic iridology – an overview. International Institute of Iridology

    Google Scholar 

  • Polat K, GĂ¼neÅŸ S (2007) An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digit Signal Process Rev J 17:702–710

    Article  Google Scholar 

  • Polat K, GĂ¼neÅŸ S, Arslan A (2008) A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine. Expert Syst Appl 34:482–487

    Article  Google Scholar 

  • Prasher B et al (2008) Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda. J Transl Med 6:48. BioMed Central

    Article  Google Scholar 

  • Qiu X, Sun Z, Tan T (2006) Global texture analysis of iris images for ethnic classification. In: International conference on advances in biometrics. ICB, Hong Kong, pp 411–418

    Google Scholar 

  • Ramachandran A et al (2013) Diabetes in South-East Asia: an update. Diabetes Res Clin Pract 103:231–237

    Article  Google Scholar 

  • Ramlee RA, Ranjit S (2009) Using iris recognition algorithm, detecting cholesterol presence. In: International conference on information management and engineering. IEEE Computer Society, pp 714–717

    Google Scholar 

  • Ramlee RA et al (2011a) Detecting cholesterol presence with iris recognition algorithm. In: Biometric systems: design and applications. INTECH

    Google Scholar 

  • Ramlee RA et al (2011b) Automated detecting arcus senilis, symptom for cholesterol presence using iris recognition algorithm. J Telecommun Electron Comput Eng 3:29–39

    Google Scholar 

  • Rastogi S, Chiappelli F (2012) Development and validation of a prototype prakriti analysis tool: inferences from a pilot study. Ayu 33:209. Wolters Kluwer – Medknow Publications

    Article  Google Scholar 

  • Risk NCD, Collaboration F (2008) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 44 million participants. Lancet 387:1513–1530

    Google Scholar 

  • Rita M (1999) Iridology: another look. Altern Health Pract 5:35–43

    Google Scholar 

  • Salles LF, Mjp S (2006) Iridology: a systematic review. Rev Esc Enferm USP 42:585–589

    Google Scholar 

  • Savigny P, Watson P, Underwood M (2009) Early management of persistent non-specific low back pain: summary of NICE guidance. BMJ 338(7708):1441–1442. British Medical Journal Publishing Group

    Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  Google Scholar 

  • Shi L et al (2002) Primary care, self-rated health, and reductions in social disparities in health. Health Serv Res 37:529–550

    Article  Google Scholar 

  • Shu T, Zhang B (2016) Facial color analysis of overweight-obesity and its relationship to healthy and diabetes mellitus using statistical pattern recognition, IEEE region 10 annual international conference, proceedings/TENCON, January 2016

    Google Scholar 

  • Shu T, Zhang B, Tang YY (2017) Novel noninvasive brain disease detection system using a facial image sensor. Sensors 17:12–24. Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  • Simon A et al (2015) An evaluation of iridology. J Am Med Assoc 242:1385–1387

    Article  ADS  Google Scholar 

  • Smith CA et al (2018) Integrative oncology and complementary medicine cancer services in Australia: findings from a national cross-sectional survey. BMC Complement Altern Med 18:1–10. BioMed Central Ltd

    Article  Google Scholar 

  • Soediono B (1989) Study of eye: iridology. J Chem Inf Model 53:160

    Google Scholar 

  • Streiner D, Norman G, Cairney J (2015) Health measurement scales: a practical guide to their development and use. Available at: https://books.google.com/books?hl =en&lr=&id=JH3OBAAAQBAJ&oi=fnd&pg= PP1&dq=Streiner+DL+Norman+GR+ Health+Measurement+Scales:+A+Practical+Guide+to+Their+Development+and+Use+2003+3rd+ed+New+York+Oxford+University+Press+Inc+&ots=tk2ywl8Hed&sig=ojsETxHdDhrjbtTJSzIm42oyzmg

  • Tamayo T et al (2014) Diabetes in Europe: an update. Diabetes Res Clin Pract 103:206–217

    Article  Google Scholar 

  • Tamborrino A et al (2021) A real case study of a full-scale anaerobic digestion plant powered by olive by-products. Foods 10:1946. Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  • Tang JL, Liu BY, Ma KW (2008) Traditional Chinese medicine. Lancet 372:1938–1940

    Article  Google Scholar 

  • Temurtas H, Yumusak N, Temurtas F (2009) A comparative study on diabetes disease diagnosis using neural networks. Expert Syst Appl 36:8610–8615

    Article  Google Scholar 

  • Than DMN, Cleary PA, Backlund MS (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New Engl J Res 353:2643–2653

    Article  Google Scholar 

  • Thomas V et al (2007) Learning to predict gender from iris images, 2007 First IEEE international conference on biometrics: theory, applications, and systems. IEEE, Piscataway, pp 1–5

    Google Scholar 

  • Um JY et al (2005) Novel approach of molecular genetic understanding of iridology: relationship between iris constitution and angiotensin converting enzyme gene polymorphism. Am J Chin Med 33:501–505

    Article  Google Scholar 

  • Unwin N et al (2012) Complementary approaches to the estimation of the global burden. Lancet 379:1487–1488

    Article  Google Scholar 

  • Wang WY et al (2021) Current policies and measures on the development of traditional Chinese medicine in China. Pharmacol Res 163:105187

    Article  Google Scholar 

  • White RO et al (2015) Health communication, self-care, and treatment satisfaction among low-income diabetes patients in a public health setting. Patient Educ Couns 98:144–149

    Article  Google Scholar 

  • Whiting DR et al (2011) IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321

    Article  Google Scholar 

  • Yisahak SF et al (2013) Clinical practice diabetes in North America and the Caribbean. Diabetes Res Clin Pract 103:223–230

    Article  Google Scholar 

  • Zhang B, Zhang H (2015) Significant geometry features in tongue image analysis. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/897580

  • Zhang HZ et al (2005) Computer aided tongue diagnosis system, annual international conference of the IEEE Engineering in Medicine and Biology Society. Conf Proc IEEE Eng Med Biol Soc 2005:6754–6757

    Google Scholar 

  • Zhang B, Vijaya Kumar BVK, Zhang D (2014) Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier. IEEE Trans Biomed Eng 61:1027–1033

    Article  Google Scholar 

  • Zhang D, Zhang H, Zhang B (2017) Tongue image analysis. Springer, Singapore

    Book  Google Scholar 

  • Zhang Y et al (2020) A wristband device for detecting human pulse and motion based on the IoT. Measurement 63:108036

    Article  Google Scholar 

  • Zhou J, Zhang Q, Zhang B (2020) A progressive stack face-based network for detecting diabetes mellitus and breast cancer. In: IAPR international joint conference on biometrics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agarwal, R., Samant, P., Bansal, A., Agarwal, R. (2023). Artificial Intelligence for Iris-Based Diagnosis in Healthcare. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_106

Download citation

Publish with us

Policies and ethics