Skip to main content

Near-Zero Liquid Discharge for Wastewater Through Membrane Technology

  • Chapter
  • First Online:
Persistent Pollutants in Water and Advanced Treatment Technology

Abstract

Regulatory authorities are making effluent disposal standards more stringent to minimize the effect of pollution load on natural streams and protect the environment. Industries producing wastewater with a high pollution load and refractory organics are forced to have a near-zero liquid discharge (NZLD) system to meet the effluent standards for disposal. In the NZLD process, solids are separated from wastewater, and recovered water is again used in the process. Thermal methods were used to achieve zero liquid discharge (ZLD), but they are not feasible for diluting wastewater streams due to high energy consumption. At present, membrane processes such as reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD), membrane electrodialysis (MED), and capacitive deionization (CDI) are being used for preconcentration of wastewater before feeding to the thermal units to reduce operational and capital cost. The use of RO and NF reduced energy consumption in conventional ZLD systems by replacing the brine concentrator. RO has high feed TDS limitation and is more prone to fouling due to operation at high pressure. Therefore, FO, MD, or CDI can be used for handling the rejection from 1st stage RO. CDI and EDR are applicable for relatively lower feed concentrations and can replace 1st stage RO in the ZLD system. The crystallizer requires a lot of energy and can be replaced with a solar crystallizer or evaporation pond to reduce energy consumption in the NZLD system. This chapter aims to give insight into the application of membrane technology in achieving ZLD and making it economically feasible. The application of recently developed membranes and modifications can improve the efficiency and applicability of membrane-based ZLD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilli A, Cath TY, Childress AE (2010) Selection of inorganic-based draw solutions for forward osmosis applications. J Memb Sci. 364:233–241. https://doi.org/10.1016/j.memsci.2010.08.010

    Article  CAS  Google Scholar 

  • Akhter M, Habib G, Qamar SU (2018) Application of electrodialysis in waste water treatment and impact of fouling on process performance. J Membr Sci Technol 8. https://doi.org/10.4172/2155-9589.1000182

  • Aslam A, Khan SJ, Shahzad HMA (2022) Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment-potential benefits, constraints, and future perspectives: an updated review

    Google Scholar 

  • Behroozi AH, Ataabadi MR (2021) Improvement in microfiltration process of oily wastewater: a comprehensive review over two decades

    Google Scholar 

  • Belessiotis V, Kalogirou S, Delyannis E (2016) Membrane distillation. In: Thermal solar desalination. Elsevier, pp 191–251

    Google Scholar 

  • Cai Y, Hu XM (2016) A critical review on draw solutes development for forward osmosis. Desalination 391:16–29. https://doi.org/10.1016/j.desal.2016.03.021

    Article  CAS  Google Scholar 

  • Chen Q-B, Tian Z, Zhao J, Wang J, Li P-F, Xu Y (2022) Near-zero liquid discharge and reclamation process based on electrodialysis metathesis for high-salinity wastewater with high scaling potential. Desalination 525:115390. https://doi.org/10.1016/j.desal.2021.115390

    Article  CAS  Google Scholar 

  • Dou Y, Dong X, Ma Y, Ge P, Li C, Zhu A, Liu Q, Zhang Q (2022) Hollow fiber ultrafiltration membranes of poly(biphenyl-trifluoroacetone). J Memb Sci. 659:120779. https://doi.org/10.1016/j.memsci.2022.120779

    Article  CAS  Google Scholar 

  • Dykstra JE, Keesman KJ, Biesheuvel PM, van der Wal A (2017) Theory of pH changes in water desalination by capacitive deionization. Water Res 119:178–186. https://doi.org/10.1016/j.watres.2017.04.039

    Article  CAS  Google Scholar 

  • Juby G, Engineers C, Zacheis A, Shih W, Ravishanker P, Mortazavi B, Nusser MD (2008) Unit number 7. Performing organization name(s) and address(es) available from the national technical information service operations division, 5285 Port Royal Road. 22161

    Google Scholar 

  • Kayvani Fard A, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Materials inorganic membranes: preparation and application for water treatment and desalination. Materials. 11. https://doi.org/10.3390/ma11010074

  • Koyuncu I, Sengur R, Turken T, Guclu S, Pasaoglu ME (2015) Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration. In: Advances in membrane technologies for water treatment: materials, processes and applications. Elsevier Inc, pp 83–128

    Google Scholar 

  • Kumar Singh S, Sharma C, Maiti A (2021) Forward osmosis to treat effluent of pulp and paper industry using urea draw-solute: energy consumption, water flux, and solute flux. Sep Purif Technol 278:119617. https://doi.org/10.1016/j.seppur.2021.119617

    Article  CAS  Google Scholar 

  • Lawson KW, Lloyd DR (1997) Membrane distillation. J Memb Sci. 124:1–25. https://doi.org/10.1016/s0376-7388(96)00236-0

    Article  CAS  Google Scholar 

  • Li D, Zhang X, Yao J, Simon GP, Wang H (2011) Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. J Cite: Chem Commun 47:1710–1712. https://doi.org/10.1039/c0cc04701e

    Article  CAS  Google Scholar 

  • Li SL, Wang J, Guan Y, Miao J, Zhai R, Wu J, Hu Y (2022) Construction of pseudo-zwitterionic polyamide RO membranes surface by grafting positively charged small molecules. Desalination 537:115892. https://doi.org/10.1016/j.desal.2022.115892

    Article  CAS  Google Scholar 

  • Liu E, Lee LY, Ong SL, Ng HY (2020) Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge—challenges and optimization

    Google Scholar 

  • Loganathan K, Chelme-Ayala P, Gamal El-Din M (2016) Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge. J Environ Manage 165:213–223. https://doi.org/10.1016/j.jenvman.2015.09.019

    Article  CAS  Google Scholar 

  • McGinnis RL, Hancock NT, Nowosielski-Slepowron MS, McGurgan GD (2013) Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 312:67–74. https://doi.org/10.1016/j.desal.2012.11.032

    Article  CAS  Google Scholar 

  • McGovern RK, Weiner AM, Sun L, Chambers CG, Zubair SM, Lienhard VJH (2014) On the cost of electrodialysis for the desalination of high salinity feeds. Appl Energy 136:649–661. https://doi.org/10.1016/j.apenergy.2014.09.050

  • Saleh TA, Gupta VK (2016) An overview of membrane science and technology. In: Nanomaterial and polymer membranes. Elsevier, pp 1–23

    Google Scholar 

  • Selatile MK, Ray SS, Ojijo V, Sadiku R (2018) Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination

    Google Scholar 

  • Semblante GU, Lee JZ, Lee LY, Ong SL, Ng HY (2018) Brine pre-treatment technologies for zero liquid discharge systems

    Google Scholar 

  • Shaffer DL, Arias Chavez LH, Ben-Sasson M, Romero-Vargas Castrillo S, Yip NY, Elimelech M (2013) Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. https://doi.org/10.1021/es401966e

  • Subramani A, Jacangelo JG (2014) Treatment technologies for reverse osmosis concentrate volume minimization: a review

    Google Scholar 

  • Tong T, Elimelech M (2016) The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol 50:6846–6855. https://doi.org/10.1021/acs.est.6b01000

    Article  CAS  Google Scholar 

  • Tsai JH, Macedonio F, Drioli E, Giorno L, Chou CY, Hu FC, Li CL, Chuang CJ, Tung KL (2017) Membrane-based zero liquid discharge: myth or reality?

    Google Scholar 

  • Vergili I, Kaya Y, Sen U, Gönder ZB, Aydiner C (2012) Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resour Conserv Recycl 58:25–35. https://doi.org/10.1016/j.resconrec.2011.10.005

    Article  Google Scholar 

  • Wan Alwi SR, Manan ZA, Samingin MH, Misran N (2008) A holistic framework for design of cost-effective minimum water utilization network. J Environ Manage 88:219–252. https://doi.org/10.1016/j.jenvman.2007.02.011

    Article  CAS  Google Scholar 

  • Wang Q, Yang P, Cong W (2011) Cation-exchange membrane fouling and cleaning in bipolar membrane electrodialysis of industrial glutamate production wastewater. Sep Purif Technol 79:103–113. https://doi.org/10.1016/j.seppur.2011.03.024

    Article  CAS  Google Scholar 

  • Xie W, Tang P, Wu Q, Chen C, Song Z, Li T, Bai Y, Lin S, Tiraferri A, Liu B (2022) Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation. Chem Eng J 428:132624. https://doi.org/10.1016/j.cej.2021.132624

    Article  CAS  Google Scholar 

  • Yadav A, Labhasetwar PK, Shahi VK (2022a) Membrane distillation crystallization technology for zero liquid discharge and resource recovery: opportunities, challenges and futuristic perspectives. Sci Total Environ 806:150692. https://doi.org/10.1016/j.scitotenv.2021.150692

    Article  CAS  Google Scholar 

  • Yadav A, Labhasetwar PK, Shahi VK (2022b) Membrane distillation crystallization technology for zero liquid discharge and resource recovery: opportunities, challenges and futuristic perspectives

    Google Scholar 

  • Yaqub M, Lee W (2019) Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review. Sci Total Environ 681:551–563. https://doi.org/10.1016/j.scitotenv.2019.05.062

    Article  CAS  Google Scholar 

  • Zhang Z, Atia AA, Andrés-Mañas JA, Zaragoza G, Fthenakis V (2022) Comparative techno-economic assessment of osmotically-assisted reverse osmosis and batch-operated vacuum-air-gap membrane distillation for high-salinity water desalination. Desalination 532:115737. https://doi.org/10.1016/j.desal.2022.115737

    Article  CAS  Google Scholar 

  • Zhang X, Zhang C, Meng F, Wang C, Ren P, Zou Q, Luan J (2021) Near-zero liquid discharge of desulfurization wastewater by electrodialysis-reverse osmosis hybrid system. J Water Process Eng 40. https://doi.org/10.1016/j.jwpe.2021.101962

  • Zhao Y, Wang X, Yuan J, Ji Z, Liu J, Wang S, Guo X, Li F, Wang J, Bi J (2022) An efficient electrodialysis metathesis route to recover concentrated NaOH-NH4Cl products from simulated ammonia and saline wastewater in coal chemical industry. Sep Purif Technol 301:122042. https://doi.org/10.1016/j.seppur.2022.122042

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swatantra P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Reddy, A.S., Singh, S.P. (2023). Near-Zero Liquid Discharge for Wastewater Through Membrane Technology. In: Sinha, A., Singh, S.P., Gupta, A.B. (eds) Persistent Pollutants in Water and Advanced Treatment Technology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2062-4_18

Download citation

Publish with us

Policies and ethics