Skip to main content

Materials and Methods of Research in Laser Polarimetry Data Processing of Biological Tissues for Forensic Determining the Age of Injury

  • Chapter
  • First Online:
Laser Polarimetry of Biological Tissues

Abstract

Materials of analytical modelling of optical properties of polycrystalline structure of skin derma are presented. An optical scheme of research of polarization structure of microscopic images of histological sections of skin derma is described. Polarization-non-homogeneous images of experimental samples are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Tuchin, L. Wang, D. Zimnjakov, Optical Polarization in Biomedical Applications (Springer, New York, USA, 2006)

    Book  Google Scholar 

  2. R. Chipman, Polarimetry, in ed. by M. Bass, Handbook of Optics: Vol I—Geometrical and Physical Optics, Polarized Light, Components and Instruments (McGraw-Hill Professional, New York, 2010), pp. 22.1–22.37

    Google Scholar 

  3. N. Ghosh, M. Wood, A. Vitkin, Polarized light assessment of complex turbid media such as biological tissues via Mueller matrix decomposition, in ed. by V. Tuchin, Handbook of Photonics for Biomedical Science (CRC Press, Taylor & Francis Group, London, 2010), pp. 253–282

    Google Scholar 

  4. S. Jacques, Polarized light imaging of biological tissues, in Handbook of Biomedical Optics. ed. by D. Boas, C. Pitris, N. Ramanujam (CRC Press, Boca Raton, London, New York, 2011), pp.649–669

    Google Scholar 

  5. N. Ghosh, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  6. M. Swami, H. Patel, P. Gupta, Conversion of 3×3 Mueller matrix to 4×4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    Article  ADS  Google Scholar 

  7. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, System of Mueller matrix polarization correlometry of biological polycrystalline layers. Proc. SPIE 10352, 103520U (2017)

    Google Scholar 

  8. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, A. Antoniv, Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy. Proc. SPIE 10396, 103962O (2017)

    Google Scholar 

  9. O. Dubolazov, L. Trifonyuk, Y. Marchuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, L. Kushnerik, I. Meglinskiy, Two-point Stokes vector parameters of object field for diagnosis and differentiation of optically anisotropic biological tissues. Proc. SPIE 10352, 103520V (2017)

    Google Scholar 

  10. L. Trifonyuk, O. Dubolazov, Y. Ushenko, V. Zhytaryuk, O. Prydiy, M. Grytsyuk, L. Kushnerik, I. Meglinskiy, I. Savka, New opportunities of differential diagnosis of biological tissues polycrystalline structure using methods of Stokes correlometry mapping of polarization inhomogeneous images. Proc. SPIE 10396, 103962R (2017)

    Google Scholar 

  11. O. Dubolazov, V. Ushenko, L. Trifoniuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, M. Grytsyuk, L. Kushnerik, I. Meglinskiy, Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers. Proc. SPIE 10396, 103962P (2017)

    Google Scholar 

  12. A. Ushenko, A. Dubolazov, V. Ushenko, O. Novakovskaya, Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations. J. Biomed. Opt. 21(7), 071110 (2016)

    Article  ADS  Google Scholar 

  13. Y. Ushenko, G. Koval, A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21(7), 071116 (2016)

    Article  ADS  Google Scholar 

  14. V. Prysyazhnyuk, Y. Ushenko, A. Dubolazov, A. Ushenko, V. Ushenko, Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 55(12), B126–B132 (2016)

    Article  Google Scholar 

  15. A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaya, O. Olar, Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations. Appl. Opt. 55(12), B56–B60 (2016)

    Article  Google Scholar 

  16. Y. Ushenko, V. Bachynsky, O. Vanchulyak, A. Dubolazov, M. Garazdyuk, V. Ushenko, Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes. Appl. Opt. 55(12), B113–B119 (2016)

    Article  Google Scholar 

  17. V.G. Kolobrodov, Q.A. Nguyen, G.S. Tymchik, The problems of designing coherent spectrum analyzers, in Proceedings of SPIE, 2013, vol. 9066, p. Article number 90660N, 11th International Conference on Correlation Optics18 September 2013 through 21 September 2013, Code 103970.

    Google Scholar 

  18. V.A. Ostafiev, S.P. Sakhno, S.V. Ostafiev, G.S. Tymchik, Laser diffraction method of surface roughness measurement. J. Mater. Process. Technol. N63, 871–874 (1997)

    Google Scholar 

  19. I. Chyzh, V. Kolobrodov, A. Molodyk, V. Mykytenko, G. Tymchik, R. Romaniuk, P. Kisała, A. Kalizhanova, B. Yeraliyeva, Energy resolution of dual-channel opto-electronic surveillance system, in Proceedings Volume 11581, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020; 115810K, Wilga, Poland (2020). https://doi.org/10.1117/12.2580338

  20. V.H. Kolobrodov, V.I. Mykytenko, G.S. Tymchik, Polarization model of thermal contrast observation objects. Thermotlectricity 1, 36–49 (2020)

    Google Scholar 

  21. V.H. Kolobrodov, M.S. Kolobrodov, G.S. Tymchik, A.S. Vasyura, P. Komada, Z. Azeshova, The output signal of a digital optoelectronic processor, in Proceedings SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108080W (1 October 2018).

    Google Scholar 

  22. G.S. Tymchik, V.I. Skytsyuk, T.R. Klotchko, H. Bezsmertna, W. Wójcik, S. Luganskaya, Z. Orazbekov, A. Iskakova, Diagnosis abnormalities of limb movement in disorders of the nervous system, in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2017, 2017/8/7, pp. 104453S–104453S-11. https://doi.org/10.1117/12.228100

  23. H. Zhengbing, M. Ivashchenko, L. Lyushenko, D. Klyushnyk, Artificial neural network training criterion formulation using error continuous domain. Int. J. Mod. Educ. Comp. Sci. (IJMECS) 13(3), 13–22 (2021). https://doi.org/10.5815/ijmecs.2021.03.02

    Article  Google Scholar 

  24. H. Zhengbing, I. Tereikovskyi, D. Chernyshev, L. Tereikovska, O. Tereikovskyi, D. Wang, Procedure for processing biometric parameters based on wavelet transformations. Int. J. Mod. Educ. Comp. Sci. (IJMECS) 13(2), 11–22 (2021). https://doi.org/10.5815/ijmecs.2021.02.02

    Article  Google Scholar 

  25. H. Zhengbing, R. Odarchenko, S. Gnatyuk, M. Zaliskyi, A. Chaplits, S. Bondar, V. Borovik, Statistical techniques for detecting cyberattacks on computer networks based on an analysis of abnormal traffic behavior. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 12(6), 1–13 (2020). https://doi.org/10.5815/ijcnis.2020.06.01

    Article  Google Scholar 

  26. H. Zhengbing, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, M. Iavich, High-speed and secure PRNG for cryptographic applications. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 12(3), 1–10 (2020). https://doi.org/10.5815/ijcnis.2020.03.01

    Article  Google Scholar 

  27. H. Zhengbing, I. Dychka, M. Onai, Y. Zhykin, Blind payment protocol for payment channel networks. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 11(6), 22–28 (2019). https://doi.org/10.5815/ijcnis.2019.06.03

    Article  Google Scholar 

  28. H. Zhengbing, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information security systems behavior under conditions of influences. Int. J. Intell. Syst. Appl. (IJISA) 9(12), 46–58 (2017). https://doi.org/10.5815/ijisa.2017.12.05

    Article  Google Scholar 

  29. H. Zhengbing, S.V. Mashtalir, O.K. Tyshchenko, M.I. Stolbovyi, Video shots’ matching via various length of multidimensional time sequences. Int. J. Intell. Syst. Appl. (IJISA) 9(11), 10–16 (2017). https://doi.org/10.5815/ijisa.2017.11.02

    Article  Google Scholar 

  30. H. Zhengbing, I.A. Tereykovskiy, L.O. Tereykovska, V.V. Pogorelov, Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems. Int. J. Intell. Syst. Appl. (IJISA) 9(10), 57–62 (2017). https://doi.org/10.5815/ijisa.2017.10.07

    Article  Google Scholar 

  31. H. Zhengbing, Y.V. Bodyanskiy, N.Y. Kulishova, O.K. Tyshchenko, A multidimensional extended neo-fuzzy neuron for facial expression recognition. Int. J. Intell. Syst. Appl. (IJISA) 9(9), 29–36 (2017). https://doi.org/10.5815/ijisa.2017.09.04

  32. H. Zhengbing, I. Dychka, Y. Sulema, Y. Radchenko, Graphical data steganographic protection method based on bits correspondence scheme. Int. J. Intell. Syst. Appl. (IJISA) 9(8), 34–40 (2017). https://doi.org/10.5815/ijisa.2017.08.04

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Z. et al. (2023). Materials and Methods of Research in Laser Polarimetry Data Processing of Biological Tissues for Forensic Determining the Age of Injury. In: Laser Polarimetry of Biological Tissues. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1734-1_2

Download citation

Publish with us

Policies and ethics