Skip to main content

A Methodology for the Prediction of Drug Target Interaction Using CDK Descriptors

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1794))

Included in the following conference series:

  • 608 Accesses

Abstract

Detecting probable Drug Target Interaction (DTI) is a critical task in drug discovery. Conventional DTI studies are expensive, labor-intensive, and take a lot of time, hence there are significant reasons to construct useful computational techniques that may successfully anticipate possible DTIs. Although certain methods have been developed for this cause, numerous interactions are yet to be discovered, and prediction accuracy is still low. To meet these challenges, we propose a DTI prediction model built on molecular structure of drugs and sequence of target proteins. In the proposed model, we use Simplified Molecular-Input Line-Entry System (SMILES) to create CDK descriptors, Molecular ACCess System (MACCS) fingerprints, Electrotopological state (Estate) fingerprints and amino-acid sequences of targets to get Pseudo Amino Acid Composition (PseAAC). We target to evaluate performance of DTI prediction models using CDK descriptors. For comparison, we use benchmark data and evaluate models’ performance on two widely used fingerprints, MACCS fingerprints and Estate fingerprints. The evaluation of performances shows that CDK descriptors are superior at predicting DTIs. The proposed method also outperforms other previously published techniques significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.scbdd.com/chemdes/.

  2. 2.

    https://www.rdkit.org/docs/GettingStartedInPython.html.

References

  1. Cao, D.S., Xiao, N., Xu, Q.S., Chen, A.F.: Rcpi: R/bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31(2), 279–281 (2015)

    Article  Google Scholar 

  2. Chen, R., Liu, X., Jin, S., Lin, J., Liu, J.: Machine learning for drug-target interaction prediction. Molecules 23(9), 2208 (2018)

    Article  Google Scholar 

  3. Chen, Z.H., You, Z.H., Guo, Z.H., Yi, H.C., Luo, G.X., Wang, Y.B.: Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model. Front. Bioeng. Biotech. 8, 338 (2020)

    Article  Google Scholar 

  4. Chen, Z., et al.: ifeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34(14), 2499–2502 (2018)

    Article  Google Scholar 

  5. Chen, Z., et al.: ilearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of dna, rna and protein sequence data. Brief. Bioinform. 21(3), 1047–1057 (2020)

    Article  MathSciNet  Google Scholar 

  6. Cheng, A.C., et al.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25(1), 71–75 (2007)

    Article  Google Scholar 

  7. Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Structure Function Bioinform. 43(3), 246–255 (2001)

    Google Scholar 

  8. Dickson, M., Gagnon, J.P.: Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Dis. 3(5), 417–429 (2004)

    Article  Google Scholar 

  9. Ezzat, A., Wu, M., Li, X.L., Kwoh, C.K.: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief. Bioinform. 20(4), 1337–1357 (2019)

    Article  Google Scholar 

  10. Günther, S., et al.: Supertarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36(suppl_1), D919–D922 (2007)

    Google Scholar 

  11. Jacob, L., Vert, J.P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Google Scholar 

  12. Ji, B.Y., You, Z.H., Jiang, H.J., Guo, Z.H., Zheng, K.: Prediction of drug-target interactions from multi-molecular network based on line network representation method. J. Transl. Med. 18(1), 1–11 (2020)

    Article  Google Scholar 

  13. Kanehisa, M., et al.: From genomics to chemical genomics: new developments in kegg. Nucleic Acids Res. 34(suppl_1), D354–D357 (2006)

    Google Scholar 

  14. Li, H., et al.: Tarfisdock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 34(suppl_2), W219–W224 (2006)

    Google Scholar 

  15. Li, Y., Liu, X.z., You, Z.H., Li, L.P., Guo, J.X., Wang, Z.: A computational approach for predicting drug-target interactions from protein sequence and drug substructure fingerprint information. Int. J. Intell. Syst. 36(1), 593–609 (2021)

    Google Scholar 

  16. Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)

    Article  Google Scholar 

  17. Luo, Y., et al.: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mahmud, S.H., Chen, W., Meng, H., Jahan, H., Liu, Y., Hasan, S.M.: Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting. Anal. Biochem. 589, 113507 (2020)

    Article  Google Scholar 

  19. Mohamed, S.K., Nováček, V., Nounu, A.: Discovering protein drug targets using knowledge graph embeddings. Bioinformatics 36(2), 603–610 (2020)

    Article  Google Scholar 

  20. Opella, S.J.: Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annual Rev. Analytical Chem. (Palo Alto, Calif.) 6, 305 (2013)

    Google Scholar 

  21. Pan, J., Li, L.P., You, Z.H., Yu, C.Q., Ren, Z.H., Chen, Y.: Prediction of drug-target interactions by combining dual-tree complex wavelet transform with ensemble learning method. Molecules 26(17), 5359 (2021)

    Article  Google Scholar 

  22. Paul, S.M., et al.: How to improve r &d productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Dis. 9(3), 203–214 (2010)

    Article  Google Scholar 

  23. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased boosting with categorical features. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  24. Sachdev, K., Gupta, M.K.: A comprehensive review of feature based methods for drug target interaction prediction. J. Biomed. Inform. 93, 103159 (2019)

    Article  Google Scholar 

  25. Sajadi, S.Z., Zare Chahooki, M.A., Gharaghani, S., Abbasi, K.: Autodti++: deep unsupervised learning for dti prediction by autoencoders. BMC Bioinformat. 22(1), 1–19 (2021)

    Article  Google Scholar 

  26. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G.: & schomburg, d. brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. D 32 (2004)

    Google Scholar 

  27. Shi, H., Liu, S., Chen, J., Li, X., Ma, Q., Yu, B.: Predicting drug-target interactions using lasso with random forest based on evolutionary information and chemical structure. Genomics 111(6), 1839–1852 (2019)

    Article  Google Scholar 

  28. Wan, F., Hong, L., Xiao, A., Jiang, T., Zeng, J.: Neodti: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35(1), 104–111 (2019)

    Article  Google Scholar 

  29. Wang, C., Wang, W., Lu, K., Zhang, J., Chen, P., Wang, B.: Predicting drug-target interactions with electrotopological state fingerprints and amphiphilic pseudo amino acid composition. Int. J. Mol. Sci. 21(16), 5694 (2020)

    Article  Google Scholar 

  30. Wang, L., et al.: Mspedti: Prediction of drug-target interactions via molecular structure with protein evolutionary information. Biology 11(5), 740 (2022)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., et al.: Rofdt: Identification of drug-target interactions from protein sequence and drug molecular structure using rotation forest. Biology 11(5), 741 (2022)

    Article  MathSciNet  Google Scholar 

  32. Wishart, D.S., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl_1), D901–D906 (2008)

    Google Scholar 

  33. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  34. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

  35. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 1025–1033 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Liyaqat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liyaqat, T., Ahmad, T., Saxena, C. (2023). A Methodology for the Prediction of Drug Target Interaction Using CDK Descriptors. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1794. Springer, Singapore. https://doi.org/10.1007/978-981-99-1648-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1648-1_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1647-4

  • Online ISBN: 978-981-99-1648-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics