Skip to main content

Active Learning with Weak Supervision for Gaussian Processes

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Annotating data for supervised learning can be costly. When the annotation budget is limited, active learning can be used to select and annotate those observations that are likely to give the most gain in model performance. We propose an active learning algorithm that, in addition to selecting which observation to annotate, selects the precision of the annotation that is acquired. Assuming that annotations with low precision are cheaper to obtain, this allows the model to explore a larger part of the input space, with the same annotation budget. We build our acquisition function on the previously proposed BALD objective for Gaussian Processes, and empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code provided at https://github.com/AOlmin/active_learning_weak_sup.

References

  1. Chakraborty, S.: Asking the right questions to the right users: active learning with imperfect oracles. In: AAAI (2020)

    Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory, vol. 2. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  3. Dua, D., Graff, C.: UCI Machine Learning Repository (2019). http://archive.ics.uci.edu/ml

  4. Gao, R., Saar-Tsechansky, M.: Cost-accuracy aware adaptive labeling for active learning. In: AAAI (2020)

    Google Scholar 

  5. Hamidieh, K.: A data-driven statistical model for predicting the critical temperature of a superconductor. Comput. Mater. Sci. 154, 346–354 (2018)

    Article  Google Scholar 

  6. Herde, M., Kottke, D., Huseljic, D., Sick, B.: Multi-annotator probabilistic active learning. In: ICPR (2020)

    Google Scholar 

  7. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian Active Learning for Classification and Preference Learning. arXiv preprint arXiv: 1112.5745 (2011)

  8. Huang, S.J., Chen, J.L., Mu, X., Zhou, Z.H.: Cost-effective active learning from diverse labelers. In: IJCAI (2017)

    Google Scholar 

  9. Li, S., Kirby, R.M., Zhe, S.: Deep multi-fidelity active learning of high-dimensional outputs. In: AISTATS (2022)

    Google Scholar 

  10. Li, S., Xing, W., Kirby, R.M., Zhe, S.: Multi-fidelity bayesian optimization via deep neural networks. In: NeurIPS (2020)

    Google Scholar 

  11. Pellegrini, R., Wackers, J., Broglia, R., Diez, M., Serani, A., Visonneau, M.: A Multi-fidelity active learning method for global design optimization problems with noisy evaluations. arXiv preprint arXiv:2202.06902 (2022)

  12. Picheny, V., Ginsbourger, D., Richet, Y., Caplin, G.: Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics 55(1), 2–13 (2013)

    Article  MathSciNet  Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Boston (2006)

    MATH  Google Scholar 

  14. Settles, B.: Active Learning Literature Survey. Technical Report. Computer Sciences Technical Report 1648, University of Wisconsin, Madison (2010)

    Google Scholar 

  15. Song, J., Chen, Y., Yue, Y.: A general framework for multi-fidelity bayesian optimization with gaussian processes. In: AISTATS (2019)

    Google Scholar 

  16. Takeno, S., et al.: Multi-fidelity bayesian optimization with max-value entropy search and its parallelization. In: ICML (2020)

    Google Scholar 

  17. Tian, K., Li, Z., Ma, X., Zhao, H., Zhang, J., Wang, B.: Toward the robust establishment of variable-fidelity surrogate models for hierarchical stiffened shells by two-step adaptive updating approach. Struct. Multidisc. Optim. 61, 1515–1528 (2020)

    Article  Google Scholar 

  18. Wu, Y., Hu, J., Zhou, Q., Wang, S., Jin, P.: An active learning multi-fidelity metamodeling method based on the bootstrap estimator. Aeros. Sci. Technol. 106, 106116 (2020)

    Article  Google Scholar 

  19. Yan, Y., Rosales, R., Fung, G., Dy, J.G.: Active learning from crowds. In: ICML (2011)

    Google Scholar 

  20. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cement Conc. Res. 28(12), 1797–1808 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Swedish Research Council (project 2020-04122), the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and the Excellence Center at Linköping–Lund in Information Technology (ELLIIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Olmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olmin, A., Lindqvist, J., Svensson, L., Lindsten, F. (2023). Active Learning with Weak Supervision for Gaussian Processes. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics