Skip to main content

A Review of Longitudinal Vibration and Vibration Reduction Technology of Propulsion Shafting

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Abstract

The performance impact and damage of ship propulsion shafting mainly come from vibration. The main causes of the longitudinal vibration of the propulsion shafting are the propeller excitation force and the ship power mechanical excitation. Longitudinal vibration not only harms the ship’s stealth capabilities but also shortens the life of the propulsion shafting components. Due to its significant advantages in low-frequency vibration control, active control has become an important vibration control strategy. This paper dis-cusses the basic principle and modeling method of active control of longitudinal vibration of shafting, summarizes the active control strategy of longitudinal vibration of shafting suitable for engineering application, and finally suggests things on the future development direction of active control technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlton, J.: Marine Propellers and Propulsion. Butterworth-Heinemann, Oxford (2018)

    Google Scholar 

  2. Tamura, Y., Kawada, T., Sasazawa, Y.: Effect of ship noise on sleep. J. Sound Vib. 205(4), 417–425 (1997)

    Article  Google Scholar 

  3. Lin, T.R., Pan, J., O’Shea, P.J., Mechefske, C.K.: A study of vibration and vibration control of ship structures. Mar. Struct. 22(4), 730–743 (2009)

    Article  Google Scholar 

  4. Yuanchao, Z., Wei, X., Zhengmin, L., Jiangyang, H.: Review of the vibration isolation technology of submarine thrust bearing. In: 2019 25th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Soong, T.T., Masri, S.F., Housner, G.W.: An overview of active structural control under seismic loads. Earthq. Spectra 7(3), 483–505 (1991)

    Article  Google Scholar 

  6. Vizentin, G., Vukelić, G., Srok, M.: Common failures of ship propulsion shafts. Pomorstvo. 31(2), 85–90 (2017)

    Article  Google Scholar 

  7. Zhang, G., Zhao, Y., Li, T., Zhu, X.: Propeller excitation of longitudinal vibration characteristics of marine propulsion shafting system. Shock Vib. (2014)

    Google Scholar 

  8. Huang, Q., Zhang, C., Jin, Y., Yuan, C., Yan, X.: Vibration analysis of marine propulsion shafting by the coupled finite element method. J. Vibroeng. 17(7), 3392–3403 (2015)

    Google Scholar 

  9. Zhang, Y., Xu, W., Li, Z., He, J., Yin, L.: Dynamic characteristics analysis of marine propulsion shafting using multi-DOF vibration coupling model. Shock Vib. (2019)

    Google Scholar 

  10. Poole, R.: The axial vibration of diesel engine crankshafts. Proc. Inst. Mech. Eng. 146(1), 167–182 (1941)

    Article  Google Scholar 

  11. Murawski, L.: Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions. J. Mar. Sci. Technol. 9(4), 171–181 (2004)

    Article  Google Scholar 

  12. Shu, G.Q., Liang, X.Y., Lu, X.C.: Axial vibration of high-speed automotive engine crankshaft. Int. J. Veh. Des. 45(4), 542–554 (2007)

    Article  Google Scholar 

  13. Visser, N.J.: The axial stiffness of marine diesel engine crankshafts. Int. Shipbuild. Prog. 15(168), 302–316 (1968)

    Article  Google Scholar 

  14. van Wijngaarden, E.: Recent developments in predicting propeller-induced hull pressure pulses. In: Proceedings of the 1st International Ship Noise and Vibration Conference, pp. 1–8 (2005)

    Google Scholar 

  15. Sontvedt, T.: Propeller induced excitation forces. Eur. Shipbuild. 20(3) (1971)

    Google Scholar 

  16. Kumai, T., Tamaki, I., Kishi, J., Yumoto, H., Sakurada, Y.: On a method of measurement of propeller bearing force exciting hull vibrations. J. Soc. Naval Architects Japan 1970(128), a85–a90 (1970)

    Article  Google Scholar 

  17. Rigby, C.: Longitudinal vibration of marine propeller shafting. Trans. Inst. Mar. Eng. 60, 67–78 (1948)

    Google Scholar 

  18. Parsons, M.G.: Mode coupling in torsional and longitudinal shafting vibrations. Mar. Technol. SNAME News 20(03), 257–271 (1983)

    Article  Google Scholar 

  19. Sverko, D.: Torsional-axial coupling in the line shafting vibrations in merchant ocean going ships (Doctoral dissertation, Concordia University) (1997)

    Google Scholar 

  20. Van Dort, D., Visser, N.J.: Crankshaft coupled free torsional-axial vibrations of a ship’s propulsion system1. Int. Shipbuild. Prog. 10(109), 333–350 (1963). https://doi.org/10.3233/isp-1963-1010902

    Article  Google Scholar 

  21. Lewis, D.W., Allaire, P.E., Thomas, P.W.: Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 1: system natural frequencies and laboratory scale model. Tribol. Trans. 32(2), 170–178 (1989)

    Article  Google Scholar 

  22. Lewis, D.W., Humphris, R.R., Thomas, P.W.: Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 2: control analysis and response of experimental system. Tribol. Trans. 32(2), 179–188 (1989)

    Article  Google Scholar 

  23. Baz, A., Gilheany, J., Steimel, P.: Active vibration control of propeller shafts. J. Sound Vib. 136(3), 361–372 (1990)

    Article  Google Scholar 

  24. Goodwin, A.J.H.: The design of a resonance changer to overcome excessive axial vibration of propeller shafting. Trans. Inst. Mar. Eng 72, 37–63 (1960)

    Google Scholar 

  25. Dylejko, P., Kessissoglou, N.: Minimization of the vibration transmission through the propeller-shafting system in a submarine. J. Acoust. Soc. Am. 116(4), 2569 (2004)

    Article  Google Scholar 

  26. Dylejko, P.G.: Optimum resonance changer for submerged vessel signature reduction (Doctoral dissertation, UNSW Sydney) (2007)

    Google Scholar 

  27. Dylejko, P.G., Kessissoglou, N.J., Tso, Y., Norwood, C.J.: Optimization of a resonance changer to minimise the vibration transmission in marine vessels. J. Sound Vib. 300(1–2), 101–116 (2007)

    Article  Google Scholar 

  28. Pan, J., Farag, N., Lin, T., Juniper, R.: Propeller induced structural vibration through the thrust bearing. In: Proceedings of the Annual Conference of the Australian Acoustical Society, pp. 13–15 (2002)

    Google Scholar 

  29. Craig Jr, R.R.: Substructure methods in vibration (1995)

    Google Scholar 

  30. Jen, C.W., Johnson, D.A., Dubois, F.: Numerical modal analysis of structures based on a revised substructure synthesis approach. J. Sound Vib. 180(2), 185–203 (1995)

    Article  Google Scholar 

  31. Fahy, F.J., Gardonio, P.: Sound and Structural Vibration: Radiation, Transmission, and Response. Elsevier, Amsterdam (2007)

    Google Scholar 

  32. Parsons, M.G., Vorus, W.S., Richard, E.M.: Added mass and damping of vibrating propellers. University of Michigan (1980)

    Google Scholar 

  33. Jakeman, R.W.: Influence of stern tube bearings on lateral vibration amplitudes in marine propeller shafting. Tribol. Int. 22(2), 125–136 (1989)

    Article  Google Scholar 

  34. Sam, Y.M., Osman, J.H., Ghani, M.R.A.: A class of proportional-integral sliding mode control with application to active suspension system. Syst. Control Lett. 51(3–4), 217–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lan, K.J., Yen, J.Y., Kramar, J.A.: Sliding mode control for active vibration isolation of a long-range scanning tunneling microscope. Rev. Sci. Instrum. 75(11), 4367–4373 (2004)

    Article  Google Scholar 

  36. Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52(3), 227–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, Z., Hicks, D.L.: Active noise attenuation using adaptive model predictive control. In: 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 241–244. IEEE (2005)

    Google Scholar 

  38. Wills, A.G., Bates, D., Fleming, A.J., Ninness, B., Moheimani, S.R.: Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans. Control Syst. Technol. 16(1), 3–12 (2007)

    Article  Google Scholar 

  39. Kuo, S.M., Morgan, D.R.: Active Noise Control Systems, vol. 4. Wiley, New York (1996)

    Google Scholar 

  40. Kinney, C.E., De Callafon, R.A.: An adaptive internal model-based controller for periodic disturbance rejection. IFAC Proc. 39(1), 273–278 (2006)

    Article  Google Scholar 

  41. Milic, L. (ed.): Multirate Filtering for Digital Signal Processing: MATLAB Applications. IGI Global, Hershey (2009)

    Google Scholar 

  42. Widrow, B., Walach, E.: Adaptive signal processing for adaptive control. IFAC Proc. 16(9), 7–12 (1983)

    Article  Google Scholar 

  43. Aström, K.J., Goodwin, G.C., Kumar, P.R. (eds.): Adaptive Control, Filtering, and Signal Processing, vol. 74. Springer Science & Business, Cham (2012)

    Google Scholar 

  44. VĂ©r, I.L., Beranek, L.L. (eds.): Noise and Vibration Control Engineering: Principles and Applications. John Wiley & Sons, Hoboken (2005)

    Google Scholar 

  45. Pontana, F., et al.: Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur. Radiol. 21(3), 627–635 (2011)

    Article  Google Scholar 

  46. Meurers, T., Veres, S.M., Elliot, S.J.: Frequency selective feedback for active noise control. IEEE Control Syst. Mag. 22(4), 32–41 (2002)

    Article  Google Scholar 

  47. Meurers, T., Veres, S.M., Tan, A.C.H.: Model-free frequency domain iterative active sound and vibration control. Control. Eng. Pract. 11(9), 1049–1059 (2003)

    Article  Google Scholar 

  48. Morgan, D.: An analysis of multiple correlation cancellation loops with a filter in the auxiliary path. IEEE Trans. Acoust. Speech Signal Process. 28(4), 454–467 (1980)

    Article  Google Scholar 

  49. Burgess, J.C.: Active adaptive sound control in a duct: a computer simulation. J. Acoust. Soc. Am. 70(3), 715–726 (1981)

    Article  Google Scholar 

  50. Douglas, S.C.: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Trans. Speech Audio Proc. 7(4), 454–465 (1999). https://doi.org/10.1109/89.771315

    Article  Google Scholar 

  51. Gong, C., Wu, M., Guo, J., et al.: Statistical analysis of multichannel F-x LMS algorithm for narrowband active noise control. Signal Proc. 108646 (2022)

    Google Scholar 

  52. Zhang, F., Sun, W., Liu, C., et al.: Application of multichannel active vibration control in a multistage gear transmission system. Shock Vib. 2022 (2022)

    Google Scholar 

  53. Shi, D., Gan, W.S., He, J., et al.: Practical implementation of multichannel filtered-x least mean square algorithm based on the multiple-parallel-branch with folding architecture for large-scale active noise control. IEEE Trans. Very Large-Scale Integr. (VLSI) Syst. 28(4) 940–953 (2019)

    Google Scholar 

  54. Fuller, C.R., Rogers, C.A., Robertshaw, H.H.: Control of sound radiation with active/adaptive structures. J. Sound Vib. 157(1), 19–39 (1992)

    Article  Google Scholar 

  55. Vipperman, J.S., Burdisso, R.A., Fuller, C.R.: Active control of broadband structural vibration using the LMS adaptive algorithm. J. Sound Vib. 166(2), 283–299 (1993)

    Article  MATH  Google Scholar 

  56. Guigou, C., Fuller, C.R., Wagstaff, P.R.: Active isolation of vibration with adaptive structures. J. Acoust. Soc. Am. 96(1), 294–299 (1994)

    Article  Google Scholar 

  57. Cabell, R.H., Fuller, C.R.: A principal component algorithm for feedforward active noise and vibration control. J. Sound Vib. 227(1), 159–181 (1999)

    Article  Google Scholar 

  58. Zhang, Z., Huang, X., Chen, Y., Hua, H.: Underwater sound radiation control by active vibration isolation: an experiment. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 223(4), 503–515 (2009)

    Google Scholar 

  59. Zhang, Z., Hu, F., Wang, J.: On saturation suppression in adaptive vibration control. J. Sound Vib. 329(9), 1209–1214 (2010)

    Article  Google Scholar 

  60. Zhang, Z.Y., Hu, F., Hua, H.X.: Simulation and experiment on active vibration isolation with an adaptive method. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 224(3), 225–238 (2010)

    Google Scholar 

  61. Zhang, Z., Chen, Y., Li, H., Hua, H.: Simulation and experimental study on vibration and sound radiation control with piezoelectric actuators. Shock. Vib. 18(1–2), 343–354 (2011)

    Article  Google Scholar 

  62. Zhang, Z., Hu, F., Li, Z., Hua, H.: Modeling and control of the vibration of two beams coupled with fluid and active links. Shock. Vib. 19(4), 653–668 (2012)

    Article  Google Scholar 

  63. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation (2013)

    Google Scholar 

  64. Bohn, C., Cortabarria, A., Härtel, V., Kowalczyk, K.: Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control. Eng. Pract. 12(8), 1029–1039 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Zhu, K., Zhang, H. (2023). A Review of Longitudinal Vibration and Vibration Reduction Technology of Propulsion Shafting. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics