Skip to main content

Continual Learning with a Memory of Non-similar Samples

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1801))

Abstract

The replay method is an effective strategy to address the problem of catastrophic forgetting, a key challenge for continuous learning. However, the sample sets obtained by replay-based methods generally suffer from local data information deficiencies. This problem leads to an imbalance in the plasticity-stability of the model on older tasks. This paper proposes a novel method, called non-similar sample storage (NSS). Non-similar refers to the Euclidean distance for feature vectors of different samples being far. NSS extracts the feature vectors of the samples and then calculates the similarity of the feature vectors for each sample after the current task training. Samples that contribute less to the model classification effect among similar samples are iteratively deleted, and the subset of low-similarity samples is retained. Moreover, NSS reserves 30% of the storage space for saving samples near the center of the sample set. Low-similarity samples stored by NSS get larger losses during the replay process, leading to lower training effectiveness of the current task. This paper introduces a knowledge distillation strategy to solve this problem. A variable parameter was used to balance the classification loss of the new task with the distillation loss of the old task (NSS-D). Experimental results in CIFAR10 and imbalanced CIFAR10 show that NSS maximizes the data’s global information and can retain the model’s ability to recognize old tasks better. Compared with classical algorithms, NSS-D performs better on CIFAR100 (48.8%) and ImageNet-200 (36.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  2. Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, No. 1 (2018)

    Google Scholar 

  3. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  4. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)

  5. De Lange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2021)

    MathSciNet  Google Scholar 

  6. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  7. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, No. 1 (2018)

    Google Scholar 

  8. Tang, S., Su, P., Chen, D., Ouyang, W.: Gradient regularized contrastive learning for continual domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, No. 3, pp. 2665–2673 (2021)

    Google Scholar 

  9. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  11. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: lifelong learning with a network of experts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3375 (2017)

    Google Scholar 

  12. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for continual learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  13. Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328 (2017)

    Google Scholar 

  14. Fernando, C., et al.: Pathnet: evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (2017)

  15. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733 (2018)

  16. Takesian, A.E., Hensch, T.K.: Balancing plasticity/stability across brain development. Prog. Brain Res. 207, 3–34 (2013)

    Article  Google Scholar 

  17. Lin, Y.S., Jiang, J.Y., Lee, S.J.: A similarity measure for text classification and clustering. IEEE Trans. Knowl. Data Eng. 26(7), 1575–1590 (2013)

    Article  Google Scholar 

  18. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  19. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23(04), 687–719 (2009)

    Article  Google Scholar 

  20. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vis. 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  21. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. arXiv preprint arXiv:1606.07947 (2016)

  22. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  23. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation on image classification. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  24. Cortes, C., Mohri, M., Rostamizadeh, A.: L2 regularization for learning kernels. arXiv preprint arXiv:1205.2653 (2012)

  25. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13 (2020)

    Article  Google Scholar 

  26. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: International Conference on Machine Learning, pp. 3987–3995. PMLR (2017)

    Google Scholar 

  27. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  28. Benjamin, A.S., Rolnick, D., Kording, K.: Measuring and regularizing networks in function space. arXiv preprint arXiv:1805.08289 (2018)

  29. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  30. Chaudhry, A., Gordo, A., Dokania, P., Torr, P., Lopez-Paz, D.: Using hindsight to anchor past knowledge in continual learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, No. 8, pp. 6993–7001 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62272355, 61702383, and 62176191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Min, Q., He, J., Yang, L., Fu, Y. (2023). Continual Learning with a Memory of Non-similar Samples. In: Pan, L., Zhao, D., Li, L., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2022. Communications in Computer and Information Science, vol 1801. Springer, Singapore. https://doi.org/10.1007/978-981-99-1549-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1549-1_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1548-4

  • Online ISBN: 978-981-99-1549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics