Skip to main content

Recycling of Platinum Group Metals and Alternative Catalysts for Catalytic Converters

  • Chapter
  • First Online:
Transportation Systems Technology and Integrated Management

Abstract

Platinum group metals (PGM) are used as a catalyst in the automotive catalytic converters to curb engine emissions. The modern catalytic converter (three-way) executes oxidation of CO and unburnt HC, and reduction of NO using its large active surfaces containing PGM, which are precious metals with high cost all over the world. Due to the high cost of the PGM, researchers are working on efficient methods for extracting and reusing these valuable metals from catalytic converters. Pyrometallurgy and hydrometallurgy are the most common ways for the extraction of the PGMs among other methods. Alternative to platinum, materials like titanium dioxide and other metal-based oxides can be used for carrying out redox reactions of toxic vehicular emissions. The use of such alternative catalysts can help in reducing the increasing demands and cost of PGMs. This chapter focuses on the possibilities of recycling the PGMs from catalytic converters and also of reducing the ever-increasing requirement of PGMs in the manufacturing of autocatalysts in the catalytic converters. The chapter reports the recent global trends of PGM recycling and its demand for use as autocatalysts, alternative materials of to PGMs in catalytic converters and alternative methods for emission reduction. Further, the engine-related challenges and research on future directions of replacing PGM’s as autocatalysts has been performed; it includes some experimental results of direct decomposition of NOx using non-noble metal catalysts such as Cu-COK12, Cu-Nb2O5, Cu-YZeolite, and Cu-ZSM5. The article should also provide a quicker understanding of research on development of low-cost non-noble metal-based alternative autocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared

BET:

Brunauer–Emmett–Teller

CHN:

Carbon Hydrogen Nitrogen analysis

CI:

Compression ignition

CO:

Carbon monoxide

DeNOx:

Direct decomposition of NOx

DPF:

Diesel particulate filter

FSP:

Flame spray pyrolysis

FTIR:

Fourier Transform Infrared Spectroscopy

H2-TPR:

Hydrogen-temperature programmed reduction

HC:

Hydrocarbons

HRTEM:

High-Resolution Transmission Electron Microscopy

ICP-OES:

Inductively coupled plasma—optical emission spectrometry

LRS:

Laser Raman spectroscopy

MFC:

Mass flow controller

N2O:

Nitrous oxide

NDIR:

Nondispersive infrared sensor

NH3-TPD:

Ammonia-Temperature programmed desorption

NO:

Nitrogen oxide

NO2:

Nitrogen dioxide

NO-TPO:

Nitrogen oxide- Temperature programmed oxidation

NOx:

Nitrogen oxide gases

PGM:

Platinum group metals

PM:

Particulate matter

PXRD:

Powder X-ray diffraction

ROW:

Rest of World

SA:

Surface Area

SCR:

Selective catalytic reduction

SEM:

Scanning electron microscope

SEM-EDX:

Energy-dispersive X-ray spectroscopy

SI:

Spark ignition

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TGA-DTA:

Thermal gravimetric analysis -Differential thermal analysis

TPD:

Temperature programmed desorption

TPO:

Temperature programmed oxidation

TPR:

Temperature programmed reduction

UHC:

Unburnt hydrocarbons

USA:

United States of America

UV vis DRS:

UV–vis diffuse reflectance spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Ambroziak, T., Gołębiowski, P., Pyza, D., Jacyna-Gołda, I., Merkisz-Guranowska, A.: Identification and analysis of parameters for the areas of the highest harmful exhaust emissions in the model EMITRANSYS. J. KONES 20(3), 9–20 (2013)

    Google Scholar 

  2. Agarwal, A.K.: Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33(3), 233–271 (2007)

    Article  Google Scholar 

  3. Gritsuk, I., Volkov, V., Mateichyk, V., Gutarevych, Y., Tsiuman, M., Goridko, N.: The evaluation of vehicle fuel consumption and harmful emission using the heating system in a driving cycle. SAE Int. J. Fuels Lubr. 10(1), 236–248 (2017)

    Article  Google Scholar 

  4. Thiyagarajan, S., Geo, V.E., Ashok, B., Nanthagopal, K., Vallinayagam, R., Saravanan, C.G., Kumaran, P.: NOx emission reduction using permanent/electromagnet-based fuel reforming system in a compression ignition engine fueled with pine oil. Clean Technol. Environ. Policy 21(4), 815–825 (2019)

    Article  Google Scholar 

  5. Watson, A.Y., Bates, R.R., Kennedy, D.: Assessment of human exposure to air pollution: methods, measurements, and models. In: Air Pollution, The Automobile, and Public Health. National Academies Press (US) (1988)

    Google Scholar 

  6. Chen, J., Huang, K.: A new technique for extraction of platinum group metals by pressure cyanidation. Hydrometallurgy 82(3–4), 164–171 (2006)

    Article  Google Scholar 

  7. Reşitoğlu, İA., Altinişik, K., Keskin, A.: The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 17(1), 15–27 (2015)

    Article  Google Scholar 

  8. Abitha, J.: Prevention of exhaust from gasoline and diesel engines. J. Adv. Mech. Eng. Sci. 2(3), 21–28 (2016)

    Article  Google Scholar 

  9. Gao, J., Tian, G., Sorniotti, A., Karci, A.E., Di Palo, R.: Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 147, 177–187 (2019)

    Article  Google Scholar 

  10. Saternus, M., Fornalczyk, A.: Possible ways of refining Precious Group Metals (PGM) obtained from recycling of the used auto catalytic converters. Metalurgija 52(2), 267–270 (2013)

    Google Scholar 

  11. Farrauto, R.J., Heck, R.M.: Catalytic converters: state of the art and perspectives. Catal. Today 51(3–4), 351–360 (1999)

    Article  Google Scholar 

  12. Panda, R., Jha, M.K., Pathak, D.D.: March. Commercial processes for the extraction of platinum group metals (PGMs). In: TMS Annual Meeting & Exhibition, pp. 119–130. Springer, Cham (2018)

    Google Scholar 

  13. Dong, H., Zhao, J., Chen, J., Wu, Y., Li, B.: Recovery of platinum group metals from spent catalysts: a review. Int. J. Miner. Process. 145, 108–113 (2015)

    Article  Google Scholar 

  14. Jha, M.K., Lee, J.C., Kim, M.S., Jeong, J., Kim, B.S., Kumar, V.: Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133, 23–32 (2013)

    Article  Google Scholar 

  15. Mpinga, C.N., Eksteen, J.J., Aldrich, C., Dyer, L.: Direct leach approaches to Platinum Group Metal (PGM) ores and concentrates: a review. Miner. Eng. 78, 93–113 (2015)

    Article  Google Scholar 

  16. Afolabi, A.S., Nkobane, M.P., Abdulkareem, A.S.: Development of PGMs and chrome extraction circuit from UG-2 ore. In: Proceedings of the World Congress on Engineering, vol. 3 (2012)

    Google Scholar 

  17. Leman, A.M., Jajuli, A., Feriyanto, D., Rahman, F., Zakaria, S.: Advanced catalytic converter in gasoline engine emission control: a review. In: MATEC Web of Conferences, vol. 87, p. 02020. EDP Sciences (2017)

    Google Scholar 

  18. Renner, H., Schlamp, G., Kleinwächter, I., Drost, E., Lüschow, H.M., Tews, P., Panster, P., Diehl, M., Lang, J., Kreuzer, T., Knödler, A.: Platinum group metals and compounds. Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–73 (2000)

    Google Scholar 

  19. Kondo, S., Takeyama, A., Okura, T.: A study on the forecasts of supply and Demand of Platinum Group Metals. J.-Min. Mater. Process. Inst. Jpn. 122(8), 386 (2006)

    Google Scholar 

  20. Loferski, P.J.: Platinum-Group Metals Statistics and Information. US Geological Survey, February. http://minerals.usgs.gov/minerals/pubs/commodity/platinum (2015). Last accessed 13 Apr 2015

  21. Matthey, J.: PGM market report, November 2016 (2019). www.platinum.mathey.com

  22. Kummer, J.T.: Catalysts for automobile emission control. Prog. Energy Combust. Sci. 6(2), 177–199 (1980)

    Article  Google Scholar 

  23. Matsuda, S., Kato, A.: Titanium oxide based catalysts-a review. Appl. Catal. 8(2), 149–165 (1983)

    Article  Google Scholar 

  24. Angelidis, T.N.: Development of a laboratory scale hydrometallurgical procedure for the recovery of Pt and Rh from spent automotive catalysts. Top. Catal. 16(1), 419–423 (2001)

    Article  Google Scholar 

  25. Atkinson, G.B., Kuczynski, R.J., Desmond, D.P.: US Department of the Interior. Cyanide leaching method for recovering platinum group metals from a catalytic converter catalyst. U.S. Patent No. 5,160,711 (1992)

    Google Scholar 

  26. Yakoumis, I., Moschovi, A.M., Giannopoulou, I., Panias, D.: Real life experimental determination of platinum group metals content in automotive catalytic converters. In: IOP Conference Series: Materials Science and Engineering, vol. 329, no. 1, p. 012009. IOP Publishing (2018)

    Google Scholar 

  27. Kummer, J.T.: Use of noble metals in automobile exhaust catalysts. J. Phys. Chem. 90(20), 4747–4752 (1986)

    Article  Google Scholar 

  28. Shelef, M., Gandhi, H.S.: The reduction of nitric oxide in automobile emissions. Platin. Met. Rev. 18(1), 2–14 (1974)

    Google Scholar 

  29. Gandhi, H.S., Stepien, H.K., Shelef, M.: Optimization of ruthenium-containing, stabilized, nitric oxide reduction catalysts. Mater. Res. Bull. 10(8), 837–845 (1975)

    Article  Google Scholar 

  30. Gandhi, H.S., Stepien, H.K., Shelef, M.: Paper No. 750177. Society of Automotive Engineers (1975)

    Google Scholar 

  31. Voorhoeve, R.J.H., Remeika, J.P., Trimble, L.E.: Perovskites containing ruthenium as catalysts for nitric oxide reduction. Mater. Res. Bull. 9(10), 1393–1404 (1974)

    Article  Google Scholar 

  32. Yao, H.C., Japar, S., Shelef, M.: Surface interactions in the system RhAl2O3. J. Catal. 50(3), 407–418 (1977)

    Article  Google Scholar 

  33. McCabe, R.W., Usmen, R.K., Ober, K., Gandhi, H.S.: The effect of alumina phase-structure on the dispersion of rhodium/alumina catalysts. J. Catal. 151(2), 385–393 (1995)

    Article  Google Scholar 

  34. Wong, C., McCabe, R.W.: Effects of high-temperature oxidation and reduction on the structure and activity of RhAl2O3 and RhSiO2 catalysts. J. Catal. 119(1), 47–64 (1989)

    Article  Google Scholar 

  35. Chen, J.G., Colaianni, M.L., Chen, P., Yates, J.T., Fisher, G.B.: Thermal behavior of a rhodium/alumina model catalyst: disappearance of surface rhodium upon heating. J. Phys. Chem. 94(12), 5059–5062 (1990)

    Article  Google Scholar 

  36. Beck, D.D., Capehart, T.W., Wong, C., Belton, D.N.: XAFS characterization of Rh/Al2O3 after treatment in high-temperature oxidizing environments. J. Catal. 144(1), 311–324 (1993)

    Article  Google Scholar 

  37. Pundir, B.P.: Engine Emissions: Pollutant Formation and Advances in Control Technology. Alpha Science International, Limited (2007)

    Google Scholar 

  38. Pardiwala, J.M., Patel, F., Patel, S.: Review paper on catalytic converter for automotive exhaust emission. In: International Conference on Current Trends in Technology, pp. 382–481. NUiCONE (2011)

    Google Scholar 

  39. Bera, P., Hegde, M.S.: Recent advances in auto exhaust catalysis. J. Indian Inst. Sci. 90(2), 299–325 (2010)

    Google Scholar 

  40. Heck, R.M., Farrauto, R.J.: Automobile exhaust catalysts. Appl. Catal. A 221(1–2), 443–457 (2001)

    Article  Google Scholar 

  41. Shelef, M., McCabe, R.W.: Twenty-five years after introduction of automotive catalysts: what next? Catal. Today 62(1), 35–50 (2000)

    Article  Google Scholar 

  42. Traa, Y., Burger, B., Weitkamp, J.: Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Microporous Mesoporous Mater. 30(1), 3–41 (1999)

    Article  Google Scholar 

  43. Nishita, Y., Mizuki, J., Tanka, H., Uenishi, M., Kimura, M.: Self regeneration of palladium-perovskite catalysts in modern automobile. J. Phys. Chem. Solids 66, 274–282 (2005)

    Article  Google Scholar 

  44. He, H.X.D.H., Dai, H.X., Au, C.T.: An investigation on the utilization of perovskite-type oxides La1−xSrxMO3 (M = Co0.77Bi0. 20Pd0. 03) as three-way catalysts. Appl. Catal. B Environ. 33(1), 65–80 (2001)

    Google Scholar 

  45. Taylor, K.C.: Why rhodium in three way catalysts? Catal. Rev.-Sci. Eng. 35(4), 457–481 (1993)

    Article  Google Scholar 

  46. Gandhi, H.S., Graham, G., McCabe, R.: Automotive exhaust catalysis. J. Catal. 216(1–2), 433–442 (2003)

    Article  Google Scholar 

  47. Shelef, M., Otto, K., Otto, N.C.: Poisoning of automotive catalysts. In: Advances in Catalysis, vol. 27, pp. 311–365. Academic Press (1979)

    Google Scholar 

  48. Heck, R.M., Farrauto, R.J.: Breakthrough catalytic technologies: the future. Catal. Air Pollut. Control. Commer. Technol. 71–112 (1995)

    Google Scholar 

  49. Fornalczyk, A., Saternus, M.: Removal of platinum group metals from the used auto catalytic converter. Metalurgija 48(2), 133–136 (2009)

    Google Scholar 

  50. Zammit, M., Wuttke, J., Ravindran, P., Aaltonen, S.: The effects of catalytic converter location and palladium loading on tailpipe emissions. No. 2012-01-1247. SAE Technical Paper (2012)

    Google Scholar 

  51. Trinh, H.B., Lee, J.C., Suh, Y.J., Lee, J.: A review on the recycling processes of spent auto-catalysts: towards the development of sustainable metallurgy. Waste Manage. 114, 148–165 (2020)

    Article  Google Scholar 

  52. Hickey, N., Boscarato, I., Kaspar, J.: Air pollution from mobile sources: formation and effects and abatement strategies. In: Current Environmental Issues and Challenges, pp. 15–43. Springer, Dordrecht (2014)

    Google Scholar 

  53. Arcoumanis, C. (ed.): Internal Combustion Engines. Elsevier (2012)

    Google Scholar 

  54. Kašpar, J., Fornasiero, P., Hickey, N.: Automotive catalytic converters: current status and some perspectives. Catal. Today 77(4), 419–449 (2003)

    Article  Google Scholar 

  55. Ozawa, M.: Role of cerium–zirconium mixed oxides as catalysts for car pollution: a short review. J. Alloys Compd. 275, 886–890 (1998)

    Article  Google Scholar 

  56. Kirichenko, A.S., Seregin, A.N., Volkov, A.I.: Developing a technology for recycling automotive exhaust-gas catalysts. Metallurgist 58(3), 250–255 (2014)

    Article  Google Scholar 

  57. Hagelüken, B.C.: Recycling the platinum group metals: a European perspective. Platin. Met. Rev. 56(1), 29–35 (2012)

    Article  Google Scholar 

  58. Rumpold, R., Antrekowitsch, J.: September. Recycling of platinum group metals from automotive catalysts by an acidic leaching process. In: Proceedings of the 5th International Platinum Conference, Sun City, South Africa, The Southern African Institute of Mining and Metallurgy, pp. 695–713 (2012)

    Google Scholar 

  59. Tekper, I., Lewballah, J.K., Quaisie, J.K., Adzabe, F.J.K., Osei, E.Y., Asamoah, E., Baidoo, P., Danquah, A.: An Investigation into the Comparisons of Exhaust Emissions Through Catalytic Converters Installed on a Kia Sportage Lx (Exhaust System) (2020)

    Google Scholar 

  60. Benson, M., Bennett, C.R., Harry, J.E., Patel, M.K., Cross, M.: The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour. Conserv. Recycl. 31(1), 1–7 (2000)

    Article  Google Scholar 

  61. Kizilaslan, E., Aktaş, S., Şeşen, M.K.: Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk. J. Eng. Environ. Sci. 33(2), 83–90 (2010)

    Google Scholar 

  62. Hoffmann, J.E.: Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts. JOM 40(6), 40–44 (1988)

    Article  Google Scholar 

  63. Kim, W., Kim, B., Choi, D., Oki, T., Kim, S.: Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automobile catalyst. J. Hazard. Mater. 183(1–3), 29–34 (2010)

    Article  Google Scholar 

  64. Sasaki, H., Maeda, M.: Zn-vapor pretreatment for acid leaching of platinum group metals from automotive catalytic converters. Hydrometallurgy 147, 59–67 (2014)

    Article  Google Scholar 

  65. Liu, G., Tokumaru, A., Owada, S.: Separation of PGMs bearing alumina phase from cordierite in spent automobile catalyst by thermal shock. Resour. Process. 60(1), 28–35 (2013)

    Article  Google Scholar 

  66. Trinh, H.B., Lee, J.C., Srivastava, R.R., Kim, S.: Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route. J. Hazard. Mater. 379, 120772 (2019)

    Article  Google Scholar 

  67. Paiva, A.P., Piedras, F.V., Rodrigues, P.G., Nogueira, C.A.: Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts–focus on leaching and solvent extraction. Sep. Purif. Technol. 286, 120474 (2022)

    Article  Google Scholar 

  68. Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., Willscher, S.: Biomining: metal recovery from ores with microorganisms. Geobiotechnology I, 1–47 (2013)

    Google Scholar 

  69. Yong, P., Rowson, N.A., Farr, J.P.G., Harris, L.R., Macaskie, L.E.: A novel electro biotechnology for the recovery of precious metals from spent automotive catalysts. Environ. Technol. 24(3), 289–297 (2003)

    Article  Google Scholar 

  70. Kriek, R.J.: Leaching of selected PGMs: a thermodynamic and electrochemical study employing less aggressive lixiviants. Master’s thesis (2008). University of Cape Town

    Google Scholar 

  71. Wang, S., Chen, A., Zhang, Z., Peng, J.: Leaching of palladium and rhodium from spent automobile catalysts by microwave roasting. Environ. Prog. Sustain. Energy 33(3), 913–917 (2014)

    Article  Google Scholar 

  72. Tyson, D.R., Bautista, R.G.: Leaching kinetics of platinum and palladium from spent automotive catalysts. Sep. Sci. Technol. 22(2–3), 1149–1167 (1987)

    Article  Google Scholar 

  73. Lanaridi, O., Platzer, S., Nischkauer, W., Betanzos, J.H., Iturbe, A.U., Del Rio Gaztelurrutia, C., Sanchez-Cupido, L., Siriwardana, A., Schnürch, M., Limbeck, A., Konegger, T.: Benign recovery of platinum group metals from spent automotive catalysts using choline-based deep eutectic solvents. Green Chem. Lett. Rev. 15(2), 404–414 (2022)

    Article  Google Scholar 

  74. Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., Liu, K., Fujita, T.: Leaching of Pt, Pd and Rh from automotive catalyst residue in various chloride based solutions. Mater. Trans. 47(1), 129–135 (2006)

    Article  Google Scholar 

  75. Puvvada, G.V.K., Sridhar, R., Lakshmanan, V.I.: Chloride metallurgy: PGM recovery and titanium dioxide production. JOM 55(8), 38–41 (2003)

    Article  Google Scholar 

  76. Karim, S., Ting, Y.P.: Recycling pathways for platinum group metals from spent automotive catalyst: a review on conventional approaches and bio-processes. Resour. Conserv. Recycl. 170, 105588 (2021)

    Article  Google Scholar 

  77. Meng, X., Han, K.N.: Recovery of platinum and palladium from spent automobile catalytic converters by leaching with solutions containing halogen salts, ammonium and oxidants (No. CONF-951105-). Minerals, Metals and Materials Society, Warrendale, PA (United States) (1995)

    Google Scholar 

  78. Bollinger, M.A., Vannice, M.A.: A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au—TiO2 catalysts. Appl. Catal. B 8(4), 417–443 (1996)

    Google Scholar 

  79. Harada, S., Ohnishi, T., Ogura, M.: Two-step catalytic system using pulsatile heating to achieve NO decomposition in the presence of water vapor. Chem. Lett. 45(11), 1283–1284 (2016)

    Article  Google Scholar 

  80. Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S.I., Kagawa, S.: Copper (II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. J. Chem. Soc. Chem. Commun. 16, 1272–1273 (1986)

    Article  Google Scholar 

  81. Ziolek, M., Sobczak, I., Decyk, P., Nowak, I.: NO adsorption and decomposition on Cu-containing mesoporous molecular sieves-comparison with CuZSM-5, vol. 125. In: Studies in Surface Science and Catalysis, pp. 633–640. Elsevier (1999)

    Google Scholar 

  82. Hasna, A.M.: Reduction of NOx gases using copper zeolite catalyst, vol. 1. In: Proceedings of the World Congress on Engineering (2009)

    Google Scholar 

  83. An, H., McGinn, P.J.: Catalytic behavior of potassium containing compounds for diesel soot combustion. Appl. Catal. B 62(1–2), 46–56 (2006)

    Article  Google Scholar 

  84. Teraoka, Y., Fukuda, H., Kagawa, S.: Catalytic activity of perovskite-type oxides for the direct decomposition of nitrogen monoxide. Chem. Lett. 19(1), 1–4 (1990)

    Article  Google Scholar 

  85. Querini, C.A., Cornaglia, L.M., Ulla, M.A., Miro, E.E.: Catalytic combustion of diesel soot on Co, K/MgO catalysts. Effect of the potassium loading on activity and stability. Appl. Catal. B: Environ. 20(3), 165–177 (1999)

    Google Scholar 

  86. Liu, S., Obuchi, A., Uchisawa, J., Nanba, T., Kushiyama, S.: An exploratory study of diesel soot oxidation with NO2 and O2 on supported metal oxide catalysts. Appl. Catal. B 37(4), 309–319 (2002)

    Article  Google Scholar 

  87. Mul, G., Kapteijn, F., Moulijn, J.A.: Catalytic oxidation of model soot by metal chlorides. Appl. Catal. B 12(1), 33–47 (1997)

    Article  Google Scholar 

  88. Tikhomirov, K., Kröcher, O., Elsener, M., Wokaun, A.: MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Appl. Catal. B 64(1–2), 72–78 (2006)

    Article  Google Scholar 

  89. Shangguan, W.F., Teraoka, Y., Kagawa, S.: Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B 16(2), 149–154 (1998)

    Article  Google Scholar 

  90. Teraoka, Y., Kanada, K., Kagawa, S.: Synthesis of La K Mn O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl. Catal. B 34(1), 73–78 (2001)

    Article  Google Scholar 

  91. Mul, G., Neeft, J.P., Kapteijn, F., Makkee, M., Moulijn, J.A.: Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Appl. Catal. B 6(4), 339–352 (1995)

    Article  Google Scholar 

  92. Wu, X., Liang, Q., Weng, D., Lu, Z.: The catalytic activity of CuO–CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catal. Commun. 8(12), 2110–2114 (2007)

    Article  Google Scholar 

  93. Zhang, H., Wang, J., Cao, Y., Wang, Y., Gong, M., Chen, Y.: Effect of Y on improving the thermal stability of MnOx-CeO2 catalysts for diesel soot oxidation. Chin. J. Catal. 36(8), 1333–1341 (2015)

    Article  Google Scholar 

  94. Zhenhua, G., Xiuli, S., Hua, W., Kongzhai, L.: Structure and catalytic property of CeO2-ZrO2-Fe2O3 mixed oxide catalysts for diesel soot combustion: effect of preparation method. J. Rare Earths 32(9), 817–823 (2014)

    Article  Google Scholar 

  95. Neyertz, C.A., Banús, E.D., Miró, E.E., Querini, C.A.: Potassium-promoted Ce0.65Zr0.35O2 monolithic catalysts for diesel soot combustion. Chem. Eng. J. 248, 394–405 (2014)

    Article  Google Scholar 

  96. Wagloehner, S., Nitzer-Noski, M., Kureti, S.: Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 259, 492–504 (2015)

    Article  Google Scholar 

  97. Legutko, P., Jakubek, T., Kaspera, W., Stelmachowski, P., Sojka, Z., Kotarba, A.: Soot oxidation over K-doped manganese and iron spinels—how potassium precursor nature and doping level change the catalyst activity. Catal. Commun. 43, 34–37 (2014)

    Article  Google Scholar 

  98. Legutko, P., Kaspera, W., Stelmachowski, P., Sojka, Z., Kotarba, A.: Boosting the catalytic activity of magnetite in soot oxidation by surface alkali promotion. Catal. Commun. 56, 139–142 (2014)

    Article  Google Scholar 

  99. Venkataswamy, P., Jampaiah, D., Rao, K.N., Reddy, B.M.: Nanostructured Ce0.7Mn0.3O2−δ and Ce0.7Fe0.3O2−δ solid solutions for diesel soot oxidation. Appl. Catal. A 488, 1–10 (2014)

    Article  Google Scholar 

  100. Busca, G., Lietti, L., Ramis, G., Berti, F.: Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl. Catal. B 18(1–2), 1–36 (1998)

    Article  Google Scholar 

  101. Grossale, A., Nova, I., Tronconi, E.: Study of a Fe–zeolite-based system as NH3-SCR catalyst for diesel exhaust aftertreatment. Catal. Today 136(1–2), 18–27 (2008)

    Article  Google Scholar 

  102. Brandenberger, S., Kröcher, O., Tissler, A., Althoff, R.: The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal. Rev. 50(4), 492–531 (2008)

    Article  Google Scholar 

  103. Cheung, T., Bhargava, S.K., Hobday, M., Foger, K.: Adsorption of NO on Cu exchanged zeolites, an FTIR study: effects Of Cu levels, NO pressure, and catalyst pretreatment. J. Catal. 158(1), 301–310 (1996)

    Article  Google Scholar 

  104. Hepburn, J.S., Thanasiu, E., Dobson, D.A., Watkins, W.L.: Experimental and modeling investigations of NOx trap performance. SAE Transactions, pp. 1987–2009 (1996)

    Google Scholar 

  105. West, B., Huff, S., Parks, J., Lewis, S., Choi, J.S., Partridge, W., Storey, J.: Assessing reductant chemistry during in-cylinder regeneration of diesel lean NOx traps. SAE Transactions, pp. 1975–1985 (2004)

    Google Scholar 

  106. Das, R.K., Bhattacharyya, S., DuttaGupta, M., Ghosh, B.B.: Theoretical and experimental analysis of iron-exchanged X-zeolite catalyst for SI engine emission control. Exp. Therm. Fluid Sci. 19(4), 214–222 (1999)

    Article  Google Scholar 

  107. Putrasari, Y.: Preparation of nio catalyst on fecral substrate using various techniques at higher oxidation process. Doctoral dissertation, Universiti Tun Hussein Onn Malaysia (2011)

    Google Scholar 

  108. Imanaka, N., Masui, T.: Advances in direct NOx decomposition catalysts. Appl. Catal. A 431, 1–8 (2012)

    Article  Google Scholar 

  109. Green, T.E., Hinshelwood, C.N.: CCXXIV—the catalytic decomposition of nitric oxide at the surface of platinum. J. Chem. Soc. (Resumed) 129, 1709–1713 (1926)

    Article  Google Scholar 

  110. Iwamoto, M., Yahiro, H., Tanda, K., Mizuno, N., Mine, Y., Kagawa, S.: Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. J. Phys. Chem. 95(9), 3727–3730 (1991)

    Google Scholar 

  111. Hamada, H., Kintaichi, Y., Sasaki, M., Ito, T.: Silver-promoted cobalt oxide catalysts for direct decomposition of nitrogen monoxide. Chem. Lett. 19(7), 1069–1070 (1990)

    Article  Google Scholar 

  112. Teraoka, Y., Torigoshi, K.I., Yamaguchi, H., Ikeda, T., Kagawa, S.: Direct decomposition of nitric oxide over stannate pyrochlore oxides: relationship between solid-state chemistry and catalytic activity. J. Mol. Catal. A Chem. 155(1–2), 73–80 (2000)

    Google Scholar 

  113. Ogata, A., Obuchi, A., Mizuno, K., Ohi, A., Aoyama, H., Ohuchi, H.: Enhancement effect of Mg2+ ion on direct nitric oxide decomposition over supported palladium catalysts. Appl. Catal. 65(2), L11–L15 (1990)

    Article  Google Scholar 

  114. Imanaka, N., Masui, T., Masaki, H.: Direct decomposition of nitric oxide over C-type cubic (Gd1–x–yYxBay)2O3–y solid solutions. Adv. Mater. 19(21), 3660–3663 (2007)

    Article  Google Scholar 

  115. Zhang, H.M., Shimizu, Y., Teraoka, Y., Miura, N., Yamazoe, N.: Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 perovskite-type oxides. J. Catal. 121(2), 432–440 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supervised by Dr. Atul Dhar, School of Engineering, Indian Institute of Technology Mandi, H.P., India. The research was performed with the collaboration of CSIR-Indian Institute of Petroleum, Dehradun, U.K., India, Indian Institute of Technology Mandi, H.P., India, and Centre of Earth Observation Science, School of Applied Sciences, University of Brighton, Brighton, BN24GJ, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balendra V. S. Chauhan .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this chapter.

Credit Author Statement

M.K. Shukla: Conceptualization, Methodology, Visualization, Writing- Original draft preparation; Balendra V.S. Chauhan: Investigation, Draft preparation, Writing and Editing; Dr. Thallada Bhaskar: Data curation, Visualization and Supervision; Dr. Atul Dhar: Validation, Supervision, Reviewing and Editing; Dr. Ajitanshu Vedratnam: Visualization, Draft preparation, Editing.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, M.K., Chauhan, B.V.S., Bhaskar, T., Dhar, A., Vedratnam, A. (2023). Recycling of Platinum Group Metals and Alternative Catalysts for Catalytic Converters. In: Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H. (eds) Transportation Systems Technology and Integrated Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-1517-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1517-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1516-3

  • Online ISBN: 978-981-99-1517-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics