Skip to main content

Optimising Transit Networks Using Simulation-Based Techniques

  • Chapter
  • First Online:
Transportation Systems Technology and Integrated Management

Abstract

Public transport systems play a critical role in improving mobility and access to opportunities, which is crucial for the socio-economic growth and well-being of any society. A key component of the system is the actual transit network, which usually consists of interconnected nodes and links that enable people to access the system and to travel to their chosen destinations in a smooth and efficient manner. This chapter focuses on the transit network design problem (TNDP), which deals with finding efficient network routes among a set of alternatives that best satisfies the conflicting objectives of different network stakeholders including passengers and operators. The goal of solving this problem is to improve the operational efficiency of a network, thereby reducing costs incurred by the service operator and minimising commuting costs for the commuter. A general description of the problem investigated in this chapter is given, exploring key aspects of the problem and trends in the discipline over time. This is followed by a discussion of the evolution of TNDP solution techniques, namely older mathematical solutions, a more recent meta-heuristics solution framework as well as simulation-based solutions that seem to be gaining traction currently. The chapter rounds off with a look at the future of the problem against technological advancements in transportation and significant structural changes that are likely to occur going forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceder, A.: Public Transit Planning and Operation: Theory, Modelling and Practice, 1st edn, p. 626. Elsevier, Burlington, MA (2007)

    Google Scholar 

  2. Kepaptsoglou, K., Karlaftis, M.: Transit route network design problem: review. J. Transp. Eng. 135(8), 491–505 (2009)

    Article  Google Scholar 

  3. Rodrigue, J., Comtois, C., Slack, B.: The Geography of Transport Systems, 3rd edn, p. 432. United Kindom, Routledge (2013)

    Google Scholar 

  4. Ferro, P.S., Golub. R.B.A.: Planned and Paratransit Service Integration Through Trunk and Feeder Arrangements: An International Review, pp. 604–618 (2012)

    Google Scholar 

  5. Buba, A.T., Lee, L.S.: A differential evolution for simultaneous transit network design and frequency setting problem. Expert. Syst. Appl. 106, 277–289 (2018)

    Article  Google Scholar 

  6. Ceder, A.: Public Transit Planning and Operation: Modeling, Practice and Behavior, 2nd edn, p. 716. CRC Press (2015)

    Google Scholar 

  7. Ibarra-Rojas, O.J., Delgado, F., Giesen, R., Muñoz, J.C.: Planning, operation, and control of bus transport systems: a literature review. Transp. Res. Part B Methodol. 77(3), 38–75 (2015)

    Article  Google Scholar 

  8. Zuidgeest, M.H.P.: Sustainable Urban Transport Development: A Dynamic Optimisation Approach. University of Twente, Enschede (2005)

    Google Scholar 

  9. Heyken Soares, P., Mumford, C.L., Amponsah, K., Mao, Y.: An adaptive scaled network for public transport route optimisation. Public Transp. 11(2), 379–412 (2019)

    Article  Google Scholar 

  10. Yang, J., Jiang, Y.: Application of modified NSGA-II to the transit network design problem. J. Adv. Transp. 2020(i), (2020)

    Google Scholar 

  11. Cadarso, L., Marin, Á.: Rapid transit network design considering risk aversion. Electron. Notes Discret. Math. 52, 29–36 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Suman, H.K., Bolia, N.B.: Improvement in direct bus services through route planning. Transp. Policy 81, 263–274 (2019)

    Article  Google Scholar 

  13. Curtin, K.M.: Operations research. In: Kempf-Leonard, K. (ed.) Encyclopedia of Social Measurement, pp. 925–931. Elsevier, Texas (2004)

    Google Scholar 

  14. Ngamchai, S., Lovell, D.J.: Optimal time transfer in bus transit route network design using a genetic algorithm. J. Transp. Eng. 129(October), 510–521 (2003)

    Article  Google Scholar 

  15. Shih, M., Mahmassani, H.: A Design Methodology for Bus Transit Networks with Coordinated Operations. Texas (1994)

    Google Scholar 

  16. Pattnaik, S.B., Mohan, S., Tom, V.M.: Urban bus transit route network design using genetic algorithm. J. Transp. Eng. 124(4), 368–375 (1998)

    Article  Google Scholar 

  17. Cipriani, E., Gori, S., Petrelli, M.: Transit network design: a procedure and an application to a large urban area. Transp. Res. Part C Emerg. Technol. 20(1), 3–14 (2012)

    Article  Google Scholar 

  18. Horni, A., Nagel, K., Axhausen, K.W.: The multi-agent transport simulation MATSim. Multi-Agent Transp. Simul. MATSim 662 (2016)

    Google Scholar 

  19. Nagel, K., Flötteröd, G.: Agent-based traffic assignment: going from trips to behavioral travelers. Int. Conf. Travel. Behav. Res. 1–26 (2009)

    Google Scholar 

  20. Possel, B., Wismans, L.J.J., Van Berkum, E.C., Bliemer, M.C.J.: The multi-objective network design problem using minimizing externalities as objectives: comparison of a genetic algorithm and simulated annealing framework. Transp. (Amst) 45(2), 545–572 (2018)

    Google Scholar 

  21. Daganzo, C.F., Ouyang, Y.: A general model of demand-responsive transportation services: from taxi to ridesharing to dial-a-ride. Transp. Res. Part B Methodol. 126, 213–224 (2019)

    Article  Google Scholar 

  22. Chen, J., Wang, S., Liu, Z., Wang, W.: Design of suburban bus route for airport access. Transp. A Transp. Sci. 13(6), 568–589 (2017)

    Google Scholar 

  23. Ouyang, Y., Nourbakhsh, S.M., Cassidy, M.J.: Continuum approximation approach to bus network design under spatially heterogeneous demand. Transp. Res. Part B Methodol. 68(18), 333–344 (2014)

    Article  Google Scholar 

  24. Szeto, W.Y., Wu, Y.: A simultaneous bus route design and frequency setting problem for Tin Shui Wai Hong Kong. Eur. J. Oper. Res. 209(2), 141–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikolić, M., Teodorović, D.: A simultaneous transit network design and frequency setting: computing with bees. Expert. Syst. Appl. 41(16), 7200–7209 (2014)

    Article  Google Scholar 

  26. Nnene, O.A., Joubert, J.W., Zuidgeest, M.H.P.: Transit network design with meta-heuristic algorithms and agent based simulation. IFAC-PapersOnLine 52(3), 13–18 (2019)

    Article  MathSciNet  Google Scholar 

  27. Newell, G.F.: Some issues related to the optimal design of bus routes. Transp. Sci. 13(1), 20–35 (1979)

    Article  Google Scholar 

  28. Fusco, G., Gori, S., Petrelli, M.: A heuristic transit network design algorithm for medium size towns. In: Proceedings of 9th Euro Working Group on Transportation, Bari, pp. 652–656. http://www.iasi.cnr.it/ewgt/13conference/116_fusco.pdf (2002)

  29. Fan, W., Machemehl, R.B.: Optimal transit route network design problem with variable transit demand: genetic algorithm approach. J. Transp. Eng. 132(1), 40–51 (2006)

    Article  Google Scholar 

  30. Nnene, O.A., Zuidgeest, M.H.P., Beukes, E.A.: Application of metaheuristic algorithms to the improvement of the MyCiTi BRT network in Cape Town. J. S. Afr. Inst. Civ. Eng. 59(4), 56–63 (2017)

    Article  Google Scholar 

  31. Talbi, E.: From Design to Implementation [Internet], vol. 2009. Main (2009). http://onlinelibrary.wiley.com. https://doi.org/10.1002/9780470496916.fmatter/summary

  32. Fan, W., Machemehl, R.B.: Optimal Transit Route Network Design Problem: Algorithms, Implementations, vol. 7. Texas (2004)

    Google Scholar 

  33. Fan, W., Machemehl, R.B.: Optimal Transit Route Network Design Problem: Algorithms, Implementations, and Numerical Results, vol. 7. Southwest Region University Transportation Center Texas Transportation Institute Texas A&M University System College, Texas (2004)

    Google Scholar 

  34. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies, p. 369. Springer (2006)

    Google Scholar 

  35. Durán-Micco, J., Vansteenwegen, P.: A survey on the transit network design and frequency setting problem. Public Transp. 14, 155–190 (2022)

    Article  Google Scholar 

  36. Johar, A., Jain, S.S., Garg, P.K.: Transit network design and scheduling using genetic algorithm–a review. Int. J. Optim. Control Theor. Appl. 6(1), 9–22 (2016)

    Google Scholar 

  37. Lampkin, W., Saalmans, P.D.: The design of routes, service frequencies, and schedules for a municipal bus undertaking: a case study. J. Oper. Res. Soc. 18(4), 375–397 (1967)

    Article  Google Scholar 

  38. Dubois, D., Bel, G., Llibre, M.: A set of methods in transportation network synthesis and analysis. J. Oper. Res. Soc. [Internet] 30(9), 797–808. http://link.springer.com (1979). https://doi.org/10.1057/jors.1979.190. [cited 2017 Aug 15]

  39. LeBlanc, L.J.: Transit system network design. Transp. Res. Part B Methodol. 22B(No 5), 383–90 (1988)

    Google Scholar 

  40. Constantin, I., Florian, M.: Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. Int. Trans. Oper. Res. 2(2), 149–164 (1995)

    Article  MATH  Google Scholar 

  41. Huang, D., Liu, Z., Fu, X., Blythe, P.T.: Multimodal transit network design in a hub-and-spoke network framework. Transp. A Transp. Sci. 14(8), 706–735 (2018)

    Google Scholar 

  42. An, K., Lo, H.K.: Robust transit network design with stochastic demand considering development density. Transp. Res. Procedia 7(852), 300–319 (2015)

    Article  Google Scholar 

  43. Nnene, O.A., Joubert, J.W., Zuidgeest, M.H.P.: An agent-based evaluation of transit network design. Procedia Comput. Sci. 151, 757–762 (2019)

    Article  Google Scholar 

  44. Arbex, R.O., da Cunha, C.B.: Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp. Res. Part B Methodol. 81, 355–376 (2015)

    Article  Google Scholar 

  45. Madadi, B., Nes, R., Snelder, M., Arem, B.: A bi‐level model to optimize road networks for a mixture of manual and automated driving: an evolutionary local search algorithm. Comput. Civ. Infrastruct. Eng. 1–17 (2019)

    Google Scholar 

  46. Lee, Y.J., Vuchic, V.R.: Transit network design with variable demand. J. Transp. Eng. 131(1), 1–10 (2005)

    Google Scholar 

  47. Beltran, B., Carrese, S., Cipriani, E., Petrelli, M.: Transit network design with allocation of green vehicles: a genetic algorithm approach. Transp. Res. Part C Emerg. Technol. 17(5), 475–483 (2009)

    Article  Google Scholar 

  48. Gallo, M., D’Acierno, L., Montella, B.: A meta-heuristic approach for solving the urban network design problem. Eur. J. Oper. Res. 201(1), 144–157 (2010)

    Article  MATH  Google Scholar 

  49. Gallo, M., Montella, B., D’Acierno, L.: The transit network design problem with elastic demand and internalisation of external costs: an application to rail frequency optimisation. Transp. Res. Part C Emerg. Technol. 19(6), 1276–1305 (2011)

    Article  Google Scholar 

  50. Brands, T., van Berkum, E.: Performance of a genetic algorithm for solving the multi-objective, multimodal transportation network design problem. Int. J. Transp. 2(1), 1–20 (2014)

    Article  Google Scholar 

  51. Sharma, S., Ukkusuri, S.V., Mathew, T.V.: Pareto optimal multiobjective optimization for robust transportation network design problem. Transp. Res. Rec. 2090, 95–104 (2009)

    Article  Google Scholar 

  52. Gosavi, A.: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning, 2nd edn, p. 554. Springer, New York (2015)

    Google Scholar 

  53. Bhatnagar, S., Prasad, H.L., Prashanth, L.A.: Stochastic Recursive Algorithms for Optimization, 1st edn. In: Lecture Notes in Control and Information Sciences, vol. 434, p. 280. Springer, London (2013)

    Google Scholar 

  54. Gosavi, A.: Background, 2nd edn. In: Simulation Based Optimization: Parametric Optimization and Reinforcement Learning, pp. 1–12. Springer, New York (2015)

    Google Scholar 

  55. Castiglione, J., Bradley, M., Gliebe, J.: Activity-Based Travel Demand Models: A Primer. SHRP 2 Report. Transportation Research Board of the National Academies, Vermont (2015)

    Google Scholar 

  56. Bates, J.: History of demand modelling. In: Hensher, D.A., Button, K.J. (eds.) Handbook of Transport Modelling, p. 11–33. Emerald Group (2000)

    Google Scholar 

  57. Duell, M., Amini, N., Chand, S., Saxena, N., Grzybowska, H., Waller, T.: Deploying a dynamic traffic assignment model for the Sydney region. Australas. Transp. Res. Forum 2015 Proc. (September), 1–14 (2015)

    Google Scholar 

  58. White, K.P., Ingalls, R.G.: The basics of simulation. In: Proceedings-Winter Simulation Conference, pp. 38–52. Washington, DC (2016)

    Google Scholar 

  59. Bohari, Z.A., Bachok, S., Osman, M.M.: Simulating the pedestrian movement in the public transport infrastructure. Procedia Soc. Behav. Sci. [Internet] 222, 791–799 (2016). https://doi.org/10.1016/j.sbspro.2016.05.167

  60. Papageorgiou, G., Damianou, P., Pitsillides, A., Aphamis, T., Ioannou, P.: Modelling and simulation of transportation systems: planning for a bus priority system. 6th EUROSIM Congr. Model Simul. (EUROSIM 2007) 2, 325–335 (2007)

    Google Scholar 

  61. Cortés, C.E., Burgos, V., Rodrigo, F.: Modelling passengers, buses and stops in traffic microsimulation: review and extensions. J. Adv. Transp. [Internet] 47(June 2010), 512–25 (2011). http://onlinelibrary.wiley.com. https://doi.org/10.1002/atr.144/full

  62. Yin, H., Han, B., Li, D., Wu, J., Sun, H.: Modeling and simulating passenger behavior for a station closure in a rail transit network. PLoS One 11(12), 1–28 (2016)

    Article  Google Scholar 

  63. Schruben, L.: Model is a verb. In: Tolk, A., Fowler, J., Shao, G., Yücesan, E. (eds.) Advances in Modeling and Simulation [Internet], pp. 17–25. Springer, Cham (2017) [cited 2019 Feb 9]. http://link.springer.com.https://doi.org/10.1007/978-3-319-64182-9_2

  64. Uhrmacher, A.M., Weyns, D. (eds.): Multi-Agent Systems: Simulation and Application, 541 p. CRC Press (2009)

    Google Scholar 

  65. Heath, B.L., Hill, R.R.: Some insights into the emergence of agent-based modelling. J. Simul. 4(3), 163–169 (2010)

    Article  Google Scholar 

  66. Hebb, D.O.: The organisation of behaviour: a neuropsychological theory. Wiley (1952)

    Google Scholar 

  67. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. [Internet] 99(suppl. 3), 7280–7287. http://www.ncbi.nlm.nih.gov/pubmed/12011407 (2002)

  68. Siebers, P.O., Macal, C.M., Garnett, J., Buxton, D., Pidd, M.: Discrete-event simulation is dead, long live agent-based simulation! J. Simul. [Internet] 4(3), 204–210 (2010). http://link.springer.com. https://doi.org/10.1057/jos.2010.14

  69. Weimer, C.W., Miller, J.O., Hill, R.R.: Agent-based modeling: an introduction and primer. In: Roeder, T.M.K., Frazier, P.I., Szechtman, R., Zhou, E., Huschka, T., Chick, S.E. (eds.) Proceedings of the 2016 Winter Simulation Conference, p. 65–79. Washington DC (2016)

    Google Scholar 

  70. Zheng, H., Son, Y.J., Chiu, Y.C., Head, L., Feng, Y., Xo, H., et al.: A Primer for Agent-Based Simulation and Modeling in Transportation Applications. Development Springfield (2013)

    Google Scholar 

  71. Balmer, M., Axhausen, K.W., Nagel, K.: An agent based demand modeling framework for large scale micro-simulations. In: 85th Annual Meeting of the Transportation Research Board, p. 43. Washington, DC (2006)

    Google Scholar 

  72. Vuk, G.: Activity Based Travel Demand Modelling-A Literature Study. Danmarks Transport Forskning (2001)

    Google Scholar 

  73. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institution of Civil Engineers Part II, pp. 325–62 (1952)

    Google Scholar 

  74. de Dios, O.J., Willumsen, L.G.: Modelling Transport, 4th edn., p. 580. Wiley & Sons, Sussex, UK (2011)

    Google Scholar 

  75. Sheffi, Y.: Urban transportation networks: equilibrium analysis with mathematical programming methods. Transp. Res. Part A Gen. [Internet] 20(1), 76–7 1986. https://doi.org/10.1016/0191-2607(86)90023-3

  76. Kaufman, D.E., Smith, R.L., Wunderlich, K.E.: An iterative routing/assignment method for anticipatory real-time route guidance. In: Vehicle Navigation and Information Systems Conference, 1991, pp. 693–700. IEEE, Ann Arbor, MI (1991)

    Google Scholar 

  77. Friedrich, M., Hofsaß, I.: A Dynamic traffic assignment method for planning and telematic applications. In: Proceedings of Seminar K, European Transport Conference, pp. 29–40. University of Stuttgart, Cambridge (2000).

    Google Scholar 

  78. Chiu, Y.C., Bottom, J., Mahut, M., Paz, A., Balakrishna, R., Waller, T., et al.: Dynamic Traffic Assignment: A Primer [Internet]. Transportation Research E-Circular. Washington, DC. https://onlinepubs.trb.org/onlinepubs/circulars/ec153.pdf (2011)

  79. Elarbi, M., Bechikh, S., Ben Said, L., Datta, R.: Multi-objective optimization: classical and evolutionary approaches. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization, pp. 1–30. Springer, Cham (2017)

    Google Scholar 

  80. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, 1st edn, p. 518. Wiley & Sons (2001)

    Google Scholar 

  81. Branke, J., Deb, K., Miettinen, K., Slowiński, R.: Multiobjective Optimization-Interactive and Evolutionary Approaches, 1st edn, p. 470. Springer-Verlag, Berlin (2008)

    Google Scholar 

  82. Rangaiah, G.P., Bonilla-Petriciolet, A. (eds.): Multi-Objective Optimization in Chemical Engineering, 512 p. Wiley & Sons Ltd., Oxford, UK (2013)

    Google Scholar 

  83. Elarbi, M., Bechikh, S., Ben Said, L., Datta, R.: Multi-objective optimization: classical and evolutionary approaches. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization, pp. 1–30. Cham, Springer (2017)

    Google Scholar 

  84. Nnene OA. Simulation-based optimisation of public transport networks [Internet]. Faculty of Engineering and the Built Environment; 2020. Available from: https://open.uct.ac.za/handle/11427/32308

  85. Nicolai, T.W.: MATSim for UrbanSim: integrating an urban simulation model with a travel model. Ph.D. (2013)

    Google Scholar 

  86. Rieser, M.: Adding transit to an agent-based transportation simulation. Ph.D. (2010)

    Google Scholar 

  87. Bray, T., Jean, P., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Extensible Markup Language (XML) 1.1, 2nd edn. In: W3C Recommendation. W3C (2006)

    Google Scholar 

  88. McHugh, B.: Pioneering open data standards: the GTFS story. In: Beyond Transparency-Open Data and Future of Civic Innovation, pp. 125–136 (2013)

    Google Scholar 

  89. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Julian, J., et al. (eds.) Parallel Problem Solving from Nature PPSN VI PPSN 2000 Lecture Notes in Computer Science, vol. 1917, pp. 849–858. Springer-Verlag, Berlin (2000)

    Google Scholar 

  90. Talbi, E.: Common concepts for metaheuritics, 2nd edn. In: Talbi, E., Zomaya, A.Y. (eds.) Metaheuristics: From Design to Implementation. Wiley and Sons, USA (2009)

    Google Scholar 

  91. TDA. Integrated Public Transport Network 2032: Network Plan (2014)

    Google Scholar 

  92. Arnold, K., Gosling, J.: The Java Programming Language, p. 595. Addison-Wesley (2000)

    Google Scholar 

  93. Michail, D., Kinable, J., Naveh, B., Sichi, J.V.: JGraphT—a java library for graph data structures and algorithms, p. 27 (2019)

    Google Scholar 

  94. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Drawing GD 2001 Lecture Notes in Computer Science, vol. 2265, pp. 501–512. Springer, Berlin (2002)

    Google Scholar 

  95. Crockford, D.: Introducing JSON. https://www.json.org/ (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obiora A. Nnene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nnene, O.A., Zuidgeest, M.H.P., Joubert, J.W. (2023). Optimising Transit Networks Using Simulation-Based Techniques. In: Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H. (eds) Transportation Systems Technology and Integrated Management. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-1517-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1517-0_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1516-3

  • Online ISBN: 978-981-99-1517-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics