Skip to main content

Extracellular Vesicles and Ischemic Cardiovascular Diseases

  • Chapter
  • First Online:
Extracellular Vesicles in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1418))

Abstract

Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell–cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamiak M, Sahoo S (2018) Exosomes in myocardial repair: advances and challenges in the development of next-generation therapeutics. Mol Ther 26(7):1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aikawa E, Blaser MC (2021) 2020 Jeffrey M. Hoeg award lecture: calcifying extracellular vesicles as building blocks of microcalcifications in cardiovascular disorders. Arterioscler Thromb Vasc Biol 41(1):117–127

    CAS  PubMed  Google Scholar 

  3. Albino D, Falcione M, Uboldi V, Temilola DO, Sandrini G, Merulla J, Civenni G, Kokanovic A, Sturchler A, Shinde D, Garofalo M, Mestre RP, Constancio V, Wium M, Burrello J, Baranzini N, Grimaldi A, Theurillat JP, Bossi D, Barile L, Henrique RM, Jeronimo C, Zerbini LF, Catapano CV, Carbone GM (2021) Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer. Commun Biol 4(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almeida Paiva R, Martins-Marques T, Jesus K, Ribeiro-Rodrigues T, Zuzarte M, Silva A, Reis L, da Silva M, Pereira P, Vader P, Petrus Gerardus Sluijter J, Goncalves L, Cruz MT, Girao H (2019) Ischaemia alters the effects of cardiomyocyte-derived extracellular vesicles on macrophage activation. J Cell Mol Med 23(2):1137–1151

    Article  CAS  PubMed  Google Scholar 

  5. Balbi C, Lodder K, Costa A, Moimas S, Moccia F, van Herwaarden T, Rosti V, Campagnoli F, Palmeri A, De Biasio P, Santini F, Giacca M, Goumans MJ, Barile L, Smits AM, Bollini S (2019) Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. Int J Cardiol 287:87–95

    Article  PubMed  Google Scholar 

  6. Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP (2018) Extracellular vesicles: how drug and pathology interfere with their biogenesis and function. Front Physiol 9:1394

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen CW, Wang LL, Zaman S, Gordon J, Arisi MF, Venkataraman CM, Chung JJ, Hung G, Gaffey AC, Spruce LA, Fazelinia H, Gorman RC, Seeholzer SH, Burdick JA, Atluri P (2018) Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovasc Res 114(7):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barile L, Cervio E, Lionetti V, Milano G, Ciullo A, Biemmi V, Bolis S, Altomare C, Matteucci M, Di Silvestre D, Brambilla F, Fertig TE, Torre T, Demertzis S, Mauri P, Moccetti T, Vassalli G (2018) Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-a. Cardiovasc Res 114(7):992–1005

    Article  CAS  PubMed  Google Scholar 

  9. Balbi C, Vassalli G (2020) Exosomes: beyond stem cells for cardiac protection and repair. Stem Cells 38(11):1387–1399

    Article  PubMed  Google Scholar 

  10. Barile L, Milano G, Vassalli G (2017) Beneficial effects of exosomes secreted by cardiac-derived progenitor cells and other cell types in myocardial ischemia. Stem Cell Investig 4:93

    Article  PubMed  PubMed Central  Google Scholar 

  11. Batista-Almeida D, Martins-Marques T, Ribeiro-Rodrigues T, Girao H (2020) The role of proteostasis in the regulation of cardiac intercellular communication. Adv Exp Med Biol 1233:279–302

    Article  CAS  PubMed  Google Scholar 

  12. Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I, Shah R, Li Y, Zhang Y, Das S, Xiao J (2017) Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 112(4):38

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I, Shah R, Li Y, Zhang Y, Das S, Xiao J (2019) Correction to: exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 114(6):44

    Article  PubMed  Google Scholar 

  14. Belostotskaya G, Hendrikx M, Galagudza M, Suchkov S (2020) How to stimulate myocardial regeneration in adult mammalian heart: existing views and new approaches. Biomed Res Int 2020:7874109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marban L, Marban E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen G, Xu C, Gillette TG, Huang T, Huang P, Li Q, Li X, Li Q, Ning Y, Tang R, Huang C, Xiong Y, Tian X, Xu J, Xu J, Chang L, Wei C, Jin C, Hill JA, Yang Y (2020) Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against ischemia/reperfusion injury. Theranostics 10(25):11754–11774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen P, Wang L, Fan X, Ning X, Yu B, Ou C, Chen M (2021) Targeted delivery of extracellular vesicles in heart injury. Theranostics 11(5):2263–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Q, Wang ZY, Chen LY, Hu HY (2017) Roles of high mobility group box 1 in cardiovascular calcification. Cell Physiol Biochem 42(2):427–440

    Article  CAS  PubMed  Google Scholar 

  19. de Abreu RC, Fernandes H, da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L (2020) Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol 17(11):685–697

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chung JJ, Han J, Wang LL, Arisi MF, Zaman S, Gordon J, Li E, Kim ST, Tran Z, Chen CW, Gaffey AC, Burdick JA, Atluri P (2020) Delayed delivery of endothelial progenitor cell-derived extracellular vesicles via shear thinning gel improves postinfarct hemodynamics. J Thorac Cardiovasc Surg 159(5):1825–1835.e1822

    Article  PubMed  Google Scholar 

  21. de Boer C, Calder B, Blackhurst D, Marais D, Blackburn J, Steinmaurer M, Woudberg NJ, Lecour S, Lovett J, Myburgh K, Bezuidenhout D, Human P, Davies NH (2021) Analysis of the regenerative capacity of human serum exosomes after a simple multistep separation from lipoproteins. J Tissue Eng Regen Med 15(1):63–77

    Article  PubMed  Google Scholar 

  22. de Couto G, Jaghatspanyan E, DeBerge M, Liu W, Luther K, Wang Y, Tang J, Thorp EB, Marban E (2019) Mechanism of enhanced MerTK-dependent macrophage efferocytosis by extracellular vesicles. Arterioscler Thromb Vasc Biol 39(10):2082–2096

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Vita A, Liverani C, Molinaro R, Martinez JO, Hartman KA, Spadazzi C, Miserocchi G, Taraballi F, Evangelopoulos M, Pieri F, Bongiovanni A, Mercatali L, Tasciotti E, Ibrahim T (2021) Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci Rep 11(1):5107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deddens JC, Vrijsen KR, Colijn JM, Oerlemans MI, Metz CH, van der Vlist EJ, Nolte-’t Hoen EN, den Ouden K, Jansen Of Lorkeers SJ, van der Spoel TI, Koudstaal S, Arkesteijn GJ, Wauben MH, van Laake LW, Doevendans PA, Chamuleau SA, Sluijter JP (2016) Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac injury. J Cardiovasc Transl Res 9(4):291–301

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dekker M, Waissi F, van Bennekom J, Silvis MJM, Timmerman N, Bank IEM, Walter JE, Mueller C, Schoneveld AH, Schiffelers RM, Pasterkamp G, Grobbee DE, de Winter RJ, Mosterd A, de Kleijn DPV, Timmers L (2020) Plasma extracellular vesicle proteins are associated with stress-induced myocardial ischemia in women presenting with chest pain. Sci Rep 10(1):12257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dusing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G, Jansen F (2021) Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl) 99(3):335–348

    Article  PubMed  Google Scholar 

  27. Eguchi S, Takefuji M, Sakaguchi T, Ishihama S, Mori Y, Tsuda T, Takikawa T, Yoshida T, Ohashi K, Shimizu Y, Hayashida R, Kondo K, Bando YK, Ouchi N, Murohara T (2019) Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem 294(31):11665–11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 71:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Escate R, Padro T, Suades R, Camino S, Muniz O, Diaz-Diaz JL, Sionis A, Mata P, Badimon L (2021) High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc Res 117(1):109–122

    Article  CAS  PubMed  Google Scholar 

  30. Femmino S, Penna C, Margarita S, Comita S, Brizzi MF, Pagliaro P (2020) Extracellular vesicles and cardiovascular system: biomarkers and cardioprotective effectors. Vascul Pharmacol 135:106790

    Article  CAS  PubMed  Google Scholar 

  31. Firoozi S, Pahlavan S, Ghanian MH, Rabbani S, Barekat M, Nazari A, Pakzad M, Shekari F, Hassani SN, Moslem F, Lahrood FN, Soleimani M, Baharvand H (2020) Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a SDKP-conjugated self-assembling peptide improve a rat model of myocardial infarction. Biochem Biophys Res Commun 524(4):903–909

    Article  CAS  PubMed  Google Scholar 

  32. Fu Y, Zhang Y, Khoo BL (2021) Liquid biopsy technologies for hematological diseases. Med Res Rev 41(1):246–274

    Article  CAS  PubMed  Google Scholar 

  33. Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K (2020) Intercellular communication by vascular endothelial cell-derived extracellular vesicles and their MicroRNAs in respiratory diseases. Front Mol Biosci 7:619697

    Article  CAS  PubMed  Google Scholar 

  34. Greco S, Gaetano C, Martelli F (2014) HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 21(8):1202–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang G, Garikipati VNS, Zhou Y, Benedict C, Houser SR, Koch WJ, Kishore R (2020) Identification and comparison of hyperglycemia-induced extracellular vesicle transcriptome in different mouse stem cells. Cell 9(9):2098

    Article  CAS  Google Scholar 

  36. Huang P, Tian X, Li Q, Yang Y (2016) New strategies for improving stem cell therapy in ischemic heart disease. Heart Fail Rev 21(6):737–752

    Article  CAS  PubMed  Google Scholar 

  37. Grover SP, Mackman N (2020) Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 307:80–86

    Article  CAS  PubMed  Google Scholar 

  38. Herrera-Zelada N, Zuniga-Cuevas U, Ramirez-Reyes A, Lavandero S, Riquelme JA (2021) Targeting the endothelium to achieve cardioprotection. Front Pharmacol 12:636134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. James-Allan LB, Devaskar SU (2021) Extracellular vesicles and their role in gestational diabetes mellitus. Placenta 113:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jansen F, Nickenig G, Werner N (2017) Extracellular vesicles in cardiovascular disease: potential applications in diagnosis, prognosis, and epidemiology. Circ Res 120(10):1649–1657

    Article  CAS  PubMed  Google Scholar 

  41. Jimenez-Avalos JA, Fernandez-Macias JC, Gonzalez-Palomo AK (2021) Circulating exosomal MicroRNAs: new non-invasive biomarkers of non-communicable disease. Mol Biol Rep 48(1):961–967

    Article  CAS  PubMed  Google Scholar 

  42. Kang S, Yang JW, Jeong JY, Park J, An HJ, Koh HM, Jang SM, Lee YJ, Song DH (2019) Size distribution of serum extracellular vesicles in mice with atherosclerosis. Pathol Res Pract 215(10):152574

    Article  PubMed  Google Scholar 

  43. Kato M, Nakamoto R, Ishizuka M, Watanabe N (2021) Facile and simple purification method for small extracellular vesicles obtained from a culture medium through cationic particle capture. Anal Bioanal Chem 413:2523

    Article  CAS  PubMed  Google Scholar 

  44. Kervadec A, Bellamy V, El Harane N, Arakelian L, Vanneaux V, Cacciapuoti I, Nemetalla H, Perier MC, Toeg HD, Richart A, Lemitre M, Yin M, Loyer X, Larghero J, Hagege A, Ruel M, Boulanger CM, Silvestre JS, Menasche P, Renault NK (2016) Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant 35(6):795–807

    Article  PubMed  Google Scholar 

  45. Kollmann D, Linares-Cervantes I, Ganesh S, Rosales R, Hamar M, Goto T, Urbanellis P, Tessandier N, Boilard E, Bruguera C, Wiebe A, Bartczak A, Yip P, Adeyi O, Selzner M, Selzner N (2020) Normothermic ex vivo liver perfusion prevents intrahepatic platelet sequestration after liver transplantation. Transplantation 104(6):1177–1186

    Article  CAS  PubMed  Google Scholar 

  46. Kraus L, Mohsin S (2020) Role of stem cell-derived microvesicles in cardiovascular disease. J Cardiovasc Pharmacol 76(6):650–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laksono S, Setianto B, Prawara AS, Dwiputra B (2021) Highlighting exosomes’ function in cardiovascular diseases. Curr Cardiol Rev 18:e241121191159

    Article  Google Scholar 

  48. Lebedeva AM, Shpektor AV, Vasilieva EY, Margolis LB (2018) Cytomegalovirus infection in cardiovascular diseases. Biochemistry (Mosc) 83(12):1437–1447

    Article  CAS  PubMed  Google Scholar 

  49. Li B, Huang Q, Lin C, Lu R, Wang T, Chen X, Liu Z, Liu Y, Wu J, Wu Y, Liao S, Ding X (2021a) Increased circulating CD31+/CD42b-EMPs in Perthes disease and inhibit HUVECs angiogenesis via endothelial dysfunction. Life Sci 265:118749

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Song Y, Wang Q, Chen J, Gao J, Tan H, Li S, Wu Y, Yang H, Huang H, Yu Y, Li Y, Zhang N, Huang Z, Pang Z, Qian J, Ge J (2021b) Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion. Theranostics 11(8):3916–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindoso RS, Sandim V, Collino F, Carvalho AB, Dias J, da Costa MR, Zingali RB, Vieyra A (2016) Proteomics of cell-cell interactions in health and disease. Proteomics 16(2):328–344

    Article  CAS  PubMed  Google Scholar 

  52. Liu Q, Piao H, Wang Y, Zheng D, Wang W (2021) Circulating exosomes in cardiovascular disease: novel carriers of biological information. Biomed Pharmacother 135:111148

    Article  CAS  PubMed  Google Scholar 

  53. Logue SE, Gustafsson AB, Samali A, Gottlieb RA (2005) Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 38(1):21–33

    Article  CAS  PubMed  Google Scholar 

  54. Madonna R, Pieragostino D, Rossi C, Guarnieri S, Nagy CT, Giricz Z, Ferdinandy P, Del Boccio P, Mariggio MA, Geng YJ, De Caterina R (2020) Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair. Vascul Pharmacol 135:106807

    Article  CAS  PubMed  Google Scholar 

  55. Maiullari F, Chirivi M, Costantini M, Ferretti AM, Recchia S, Maiullari S, Milan M, Presutti D, Pace V, Raspa M, Scavizzi F, Massetti M, Petrella L, Fanelli M, Rizzi M, Fortunato O, Moretti F, Caradonna E, Bearzi C, Rizzi R (2021) In vivoorganized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication 13:035014

    Article  CAS  Google Scholar 

  56. Maring JA, Lodder K, Mol E, Verhage V, Wiesmeijer KC, Dingenouts CKE, Moerkamp AT, Deddens JC, Vader P, Smits AM, Sluijter JPG, Goumans MJ (2019) Cardiac progenitor cell-derived extracellular vesicles reduce infarct size and associate with increased cardiovascular cell proliferation. J Cardiovasc Transl Res 12(1):5–17

    Article  PubMed  Google Scholar 

  57. Maron BA, Wang RS, Shevtsov S, Drakos SG, Arons E, Wever-Pinzon O, Huggins GS, Samokhin AO, Oldham WM, Aguib Y, Yacoub MH, Rowin EJ, Maron BJ, Maron MS, Loscalzo J (2021) Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat Commun 12(1):873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Goncalves L, Sluijter JP, Girao H (2020) Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 3(12):e202000821

    Article  PubMed  PubMed Central  Google Scholar 

  59. Minghua W, Zhijian G, Chahua H, Qiang L, Minxuan X, Luqiao W, Weifang Z, Peng L, Biming Z, Lingling Y, Zhenzhen W, Jianqing X, Huihui B, Xiaozhong W, Xiaoshu C (2018) Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 9(3):320

    Article  PubMed  PubMed Central  Google Scholar 

  60. Penna C, Femmino S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P (2021) Extracellular vesicles in comorbidities associated with ischaemic heart disease: focus on sex, an overlooked factor. J Clin Med 10(2):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pezzana C, Agnely F, Bochot A, Siepmann J, Menasche P (2021) Extracellular vesicles and biomaterial design: new therapies for cardiac repair. Trends Mol Med 27(3):231–247

    Article  CAS  PubMed  Google Scholar 

  62. Pironti G, Andersson DC, Lund LH (2021) Mechanistic and therapeutic implications of extracellular vesicles as a potential link between Covid-19 and cardiovascular disease manifestations. Front Cell Dev Biol 9:640723

    Article  PubMed  PubMed Central  Google Scholar 

  63. Potz BA, Scrimgeour LA, Pavlov VI, Sodha NR, Abid MR, Sellke FW (2018) Extracellular vesicle injection improves myocardial function and increases angiogenesis in a swine model of chronic ischemia. J Am Heart Assoc 7(12):e008344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Prattichizzo F, Matacchione G, Giuliani A, Sabbatinelli J, Olivieri F, de Candia P, De Nigris V, Ceriello A (2021) Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Theranostics 11(3):1031–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D (2020) Recent approaches for angiogenesis in search of successful tissue engineering and regeneration. Curr Stem Cell Res Ther 15(2):111–134

    Article  PubMed  Google Scholar 

  66. Rosand O, Hoydal MA (2021) Cardiac exosomes in ischemic heart disease- a narrative review. Diagnostics (Basel) 11(2):269

    Article  PubMed  Google Scholar 

  67. Saheera S, Jani VP, Witwer KW, Kutty S (2021) Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 320:H1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaub T, Janke D, Zickler D, Lange C, Girndt M, Schindler R, Dragun D, Hegner B (2021) High cut-off dialysis mitigates pro-calcific effects of plasma on vascular progenitor cells. Sci Rep 11(1):1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R (2018) Initiation and propagation of vascular calcification is regulated by a concert of platelet- and smooth muscle cell-derived extracellular vesicles. Front Cardiovasc Med 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scrimgeour LA, Potz BA, Aboul Gheit A, Liu Y, Shi G, Pfeiffer M, Colantuono BJ, Sodha NR, Abid MR, Sellke FW (2020) Intravenous injection of extracellular vesicles to treat chronic myocardial ischemia. PloS One 15(9):e0238879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scrimgeour LA, Potz BA, Aboul Gheit A, Shi G, Stanley M, Zhang Z, Sodha NR, Ahsan N, Abid MR, Sellke FW (2019) Extracellular vesicles promote arteriogenesis in chronically ischemic myocardium in the setting of metabolic syndrome. J Am Heart Assoc 8(15):e012617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365(6):537–547

    Article  CAS  PubMed  Google Scholar 

  73. Silvestre JS (2012) Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases. Thromb Res 130(Suppl 1):S90–S94

    Article  PubMed  Google Scholar 

  74. Sluijter JPG, Davidson SM, Boulanger CM, Buzas EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P (2018) Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the working group on cellular biology of the heart of the European Society of Cardiology. Cardiovasc Res 114(1):19–34

    Article  CAS  PubMed  Google Scholar 

  75. Song Y, Zhang C, Zhang J, Jiao Z, Dong N, Wang G, Wang Z, Wang L (2019) Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 9(8):2346–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Terenzi DC, Trac JZ, Teoh H, Gerstein HC, Bhatt DL, Al-Omran M, Verma S, Hess DA (2019) Vascular regenerative cell exhaustion in diabetes: translational opportunities to mitigate cardiometabolic risk. Trends Mol Med 25(7):640–655

    Article  PubMed  Google Scholar 

  77. Uil M, Hau CM, Ahdi M, Mills JD, Kers J, Saleem MA, Florquin S, Gerdes VEA, Nieuwland R, Roelofs J (2021) Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy. Clin Kidney J 14(1):358–365

    Article  CAS  PubMed  Google Scholar 

  78. Vacchi E, Burrello J, Burrello A, Bolis S, Monticone S, Barile L, Kaelin-Lang A, Melli G (2021) Profiling inflammatory extracellular vesicles in plasma and cerebrospinal fluid: an optimized diagnostic model for Parkinson’s disease. Biomedicine 9(3):230

    CAS  Google Scholar 

  79. Vagida MS, Arakelyan A, Lebedeva AM, Grivel JC, Shpektor AV, Vasilieva EY, Margolis LB (2016) Analysis of extracellular vesicles using magnetic nanoparticles in blood of patients with acute coronary syndrome. Biochemistry (Mosc) 81(4):382–391

    Article  CAS  PubMed  Google Scholar 

  80. van Kralingen JC, McFall A, Ord ENJ, Coyle TF, Bissett M, McClure JD, McCabe C, Macrae IM, Dawson J, Work LM (2019) Altered extracellular vesicle MicroRNA expression in ischemic stroke and small vessel disease. Transl Stroke Res 10(5):495–508

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vanhaverbeke M, Gal D, Holvoet P (2017) Functional role of cardiovascular exosomes in myocardial injury and atherosclerosis. Adv Exp Med Biol 998:45–58

    Article  CAS  PubMed  Google Scholar 

  82. Vilades D, Martinez-Camblor P, Ferrero-Gregori A, Bar C, Lu D, Xiao K, Vea A, Nasarre L, Sanchez Vega J, Leta R, Carreras F, Thum T, Llorente-Cortes V, de Gonzalo-Calvo D (2020) Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. FASEB J 34(3):4403–4414

    Article  CAS  PubMed  Google Scholar 

  83. Villa Del Campo C, Liaw NY, Gunadasa-Rohling M, Matthaei M, Braga L, Kennedy T, Salinas G, Voigt N, Giacca M, Zimmermann WH, Riley PR (2021) Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovasc Res 118:597

    Article  Google Scholar 

  84. Villanueva M, Michie C, Parent S, Kanaan GN, Rafatian G, Kanda P, Ye B, Liang W, Harper ME, Davis DR (2019) Glyoxalase 1 prevents chronic hyperglycemia induced heart-explant derived cell dysfunction. Theranostics 9(19):5720–5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang B, Zhang M, Urabe G, Shirasu T, Guo LW, Kent KC (2021) PERK inhibition promotes post-angioplasty re-endothelialization via modulating SMC phenotype changes. J Surg Res 257:294–305

    Article  CAS  PubMed  Google Scholar 

  86. Wang L, Wei J, Da Fonseca FA, Wang H, Zhang L, Zhang Q, Bellio MA, Chu XM, Khan A, Jayaweera D, Hare JM, Dong C (2020) Rejuvenation of senescent endothelial progenitor cells by extracellular vesicles derived from mesenchymal stromal cells. JACC Basic Transl Sci 5(11):1127–1141

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ward MR, Abadeh A, Connelly KA (2018) Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med 7(7):543–550

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wider J, Undyala VVR, Whittaker P, Woods J, Chen X, Przyklenk K (2018) Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication. Basic Res Cardiol 113(3):16

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wu Q, Wang J, Tan WLW, Jiang Y, Wang S, Li Q, Yu X, Tan J, Liu S, Zhang P, Tiang Z, Chen Z, Foo RS, Yang HT (2020) Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis 11(5):354

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xiong YY, Gong ZT, Tang RJ, Yang YJ (2021) The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics 11(3):1046–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yadid M, Lind JU, Ardona HAM, Sheehy SP, Dickinson LE, Eweje F, Bastings MMC, Pope B, O'Connor BB, Straubhaar JR, Budnik B, Kleber AG, Parker KK (2020) Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-on-chip. Sci Transl Med 12(565):eaax8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yuan C, Ni L, Zhang C, Hu X, Wu X (2021) Vascular calcification: new insights into endothelial cells. Microvasc Res 134:104105

    Article  CAS  PubMed  Google Scholar 

  93. Zhang L, Graf I, Kuang Y, Zheng X, Haupt M, Majid A, Kilic E, Hermann DM, Psychogios MN, Weber MS, Ochs J, Bahr M, Doeppner TR (2021a) Neural progenitor cell-derived extracellular vesicles enhance blood-brain barrier integrity by NF-kappaB (nuclear factor-kappaB)-dependent regulation of ABCB1 (ATP-binding cassette transporter B1) in stroke mice. Arterioscler Thromb Vasc Biol 41(3):1127–1145

    Article  CAS  PubMed  Google Scholar 

  94. Zhang YX, Tang RN, Wang LT, Liu BC (2021b) Role of crosstalk between endothelial cells and smooth muscle cells in vascular calcification in chronic kidney disease. Cell Prolif 54(3):e12980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhao X, Jia Y, Chen H, Yao H, Guo W (2019) Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury. Exp Ther Med 18(1):179–187

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu Z, Shen Y, Chen Y, Shi H, Shi Y (2021) The exosome of platelet endothelial cell adhesion molecule-1 (PECAM1) protein: a potential risking star in high blood pressure patients (HBPP). Medicine (Baltimore) 100(4):e21370

    Article  CAS  PubMed  Google Scholar 

  97. Alfaidi M, Wilson H, Daigneault M, Burnett A, Ridger V, Chamberlain J, Francis S (2015) Neutrophil elastase promotes interleukin-1beta secretion from human coronary endothelium. J Biol Chem 290(40):24067–24078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beltrami C, Angelini TG, Emanueli C (2015) Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 89(Pt A):42–50

    Article  CAS  PubMed  Google Scholar 

  99. Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24(4):199–206

    Article  CAS  PubMed  Google Scholar 

  100. Gill R, Kuriakose R, Gertz ZM, Salloum FN, Xi L, Kukreja RC (2015) Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem 402(1–2):41–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (22003038 to X.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuerui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Wang, S., Chen, X. (2023). Extracellular Vesicles and Ischemic Cardiovascular Diseases. In: Xiao, J. (eds) Extracellular Vesicles in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1418. Springer, Singapore. https://doi.org/10.1007/978-981-99-1443-2_4

Download citation

Publish with us

Policies and ethics