Skip to main content

An Efficient System for Grading Diabetic Retinopathy by Detecting the Location of Lesions

  • Conference paper
  • First Online:
Artificial Intelligence and Sustainable Computing (ICSISCET 2022)

Abstract

Nowadays, diabetic retinopathy, also called as diabetic eye disease, has become a major cause of vision loss. In modern ophthalmology, an accurate detection and grading of diabetic retinopathy using the color retinal fundus photograph remains a challenging task. This proposed work presents an efficient system to detect exudates that will aid the accurate grading of diabetic retinopathy. For this purpose, a novel two-stage hierarchical classifier is introduced to differentiate the pathological and healthy retinal images. Initially, the green channel of each RGB retinal image is preprocessed and the exudates are detected. Next to analyze and discriminate the normal and lesion-affected images, a set of feature vectors based on size, texture, and intensity are extracted. Then, these features are classified using a two-stage hierarchical classifier. Finally, based on this classification result, an automatic grading system for the detection of diabetic retinopathy is developed and validated on five publicly available databases. The proposed grading system achieves 100% sensitivity, 98.24% specificity, and 0.95 AUC, which is high, compared to other state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor HR, Keeffe JE (2001) World blindness: a 21st century perspective. Brit J Ophthalmol 85(3):261–266

    Article  Google Scholar 

  2. Ding J, Wong TY (2012) Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diabetes Rep 12(4):346–354

    Article  Google Scholar 

  3. Yau JWY et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564

    Article  Google Scholar 

  4. Ramasubramanian B, Selvaperumal S An efficient approach for the automatic detection of hemorrhages in color retinal images. IET Image Process

    Google Scholar 

  5. Wild S, Gojka R, Andres G, Richard S, Hilary K (2004) Global prevalence of diabetes. Diabetes Care 27(5):1047–1053

    Google Scholar 

  6. World Health Organization (WHO) (2013) Universal eye health: a global action plan 2014–2019

    Google Scholar 

  7. Ramasubramanian B, Selvaperumal S (2016) A stand-alone MATLAB application for the detection of optic disc and macula. In: IEEE international conference on advanced communication, control and computing technologies (ICACCCT'16), May 2016

    Google Scholar 

  8. Ramasubramanian B, Selvaperumal S (2017) An efficient MATLAB App. for the grading of diabetic retinopathy using color fundus images. Int J Control Theory Appl 10:625–638

    Google Scholar 

  9. Baudoin CE, Lay BJ, Klein JC (1984) Automatic detection of microaneurysms in diabetic fluorescein angiography. Rev D Epidemiol St Publique 32(3–4):254–261

    Google Scholar 

  10. Adal KM, Sidibé D, Ali S, Chaum E, Karnowski TP, Mériaudeau F (2014) Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput Methods Programs Biomed 114(1):1–10

    Article  Google Scholar 

  11. Roychowdhury S, Koozekanani DD, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE Trans Biomed Health Inform 18(5)

    Google Scholar 

  12. Osarch A, Mirmehdi M, Thomas B, Markham R (2006) Classification and localization of diabetic related eye disease. In: Proceedings of the European conference on computer vision, vol 2353, pp 325–329

    Google Scholar 

  13. Zhou W, Wu C, Chen D, Yi Y, Du W Automatic microaneurysm detection using the sparse principal component analysis based unsupervised classification method. https://doi.org/10.1109/ACCESS.2017.2671918

  14. Sopharak A, Dailey MN, Uyyanonvara B, Barman S, Williamson T, Moe YA (2011) Machine learning approach to automatic exudates detection in retinal images from diabetic patients. J Mod Opt 57(2):124–135

    Google Scholar 

  15. Seoud L, Hurtut T, Chelbi J (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35(4):1116–1126

    Google Scholar 

  16. Walter T et al (2007) Automatic detection of microaneurysms in color fundus images. Med Image Anal 11(6):555–66

    Google Scholar 

  17. Ramasubramanian B, Mahendran G (2012) An efficient integrated approach for the detection of exudates and diabetic maculopathy in colour fundus images. Adv Comput: Int J 03(5):83–91

    Google Scholar 

  18. Tang L, Niemeijer M, Reinhardt JM (2013) Splat feature classification with application to retinal hemorrhage detection in fundus images. IEEE Trans Med Imaging 32(2):364–375

    Google Scholar 

  19. Agurto C, Murray V, Barriga E (2010) Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512

    Google Scholar 

  20. Sinthanayothin C et al (2002) Automated detection of diabetic retinopathy on digital fundus images. Diabetic Med AJ Brit Diabetic Assoc 19(2):105–112

    Google Scholar 

  21. Ravishankar S, Jain A, Mittal A (2009) Automated feature extraction for early detection of diabetic retinopathy in fundus images. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  22. van Grinsven MJJP, van Ginneken B, Hoyng CB (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284

    Google Scholar 

  23. Roychowdhury S, Koozekanani DD, Parhi KK (2012) Screening fundus images for diabetic retinopathy. In: Proceedings of the conference record of the 46th Asilomar conference on signals, systems and computers, pp 1641–1645

    Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  25. Srinivas M, Roy D, Krishna Mohan C (2016) Discriminative feature extraction from X-ray images using deep convolutional neural networks. In: ICASSP, pp 917–921

    Google Scholar 

  26. Mizutani A, Muramatsu C, Hatanaka Y et al Automated microaneurysms detection method based on double ring filter in retinal fundus images. SPIE Med Imaging Comput Aid Diagn 7260:72601N–72601N-8

    Google Scholar 

  27. Lu X et al (2017) Feature extraction and fusion using deep convolutional neural networks for face detection. Hindawi Math Probl Eng

    Google Scholar 

  28. Simonyan K, Zisserman A Very deep convolutional networks for large-scale image recognition. http://arxiv.org/abs/1409.1556

  29. Zeiler M, Fergus R (2014) Visualizing and understanding convolutional networks. In: Proceedings of the European conference on computer vision, pp 818–833

    Google Scholar 

  30. (2011) Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology. http://messidor.crihan.fr/download-en.php.

  31. Staal J, Abramoff M, Niemeijer M, Viergever M, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509

    Article  Google Scholar 

  32. Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Uusitalo H, Klviinen H, Pietil J (2006) Diaretdb0: evaluation database and methodology for diabetic retinopathy algorithms. Tech. Rep., Lappeenranta University of Technology, Finland

    Google Scholar 

  33. Kauppi T, Kalesnykiene V, Kmrinen J-K, Lensu L, Sorr I, Raninen A, Voutilainen R, Uusitalo H, Klviinen H, Pietil J (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the 11th conference on medical image understanding and analysis (MIUA2007), pp 61–65

    Google Scholar 

  34. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  35. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

    Article  MATH  Google Scholar 

  36. Odstrcilik J et al (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 7(4):373–383

    Article  MathSciNet  Google Scholar 

  37. Hoover A, Goldbaum M (2003) Locating the optic nerve in retinal image using the fuzzy convergence of blood vessels. IEEE Trans Med Imaging 22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ramasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramasubramanian, B., Hemanand, D., Kavinkumar, K., Muthu Manjula, M. (2023). An Efficient System for Grading Diabetic Retinopathy by Detecting the Location of Lesions. In: Pandit, M., Gaur, M.K., Kumar, S. (eds) Artificial Intelligence and Sustainable Computing. ICSISCET 2022. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-1431-9_57

Download citation

Publish with us

Policies and ethics