Skip to main content

Survey on Decoding Schemes of the Polar Code Using the Deep Learning

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 873))

  • 359 Accesses

Abstract

In the era of 5G Internet of everything, communications between different machines have strict requirements on latency and reliability. Due to the large amount of computations of the decoding algorithm of the polar code, the decoding time is too long, which cannot meet the low-latency system requirements. Deep learning has the ability of parallel computing, associative memory, self-organization and self-adaptation. Therefore, it is of great theoretical significance to apply deep learning to the polar code decoding algorithm. This paper reviews the development of the deep learning, and indicate that deep learning algorithms have been widely used in various fields. The traditional decoding method of the polar code is introduced, and the advantages and disadvantages of different decoding methods are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  4. Sanyal, H., Agrawal, R.: Latest trends in machine learning & deep learning techniques and their applications. Int. Res. Anal. J 14(1), 348–353 (2018)

    Google Scholar 

  5. Landahl, H.D., McCulloch, W.S., Pitts, W.: A statistical consequence of the logical calculus of nervous nets. Bull. Math. Biophys. 5(4), 135–137 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Minsky, M.L., Papert, S.A.: Perceptrons: expanded edition (1988)

    Google Scholar 

  7. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  9. Zhuang, Y., Lu, R.: Multi-parameter grain analysis model based on BP neural network. In: 2018 International Conference on Transportation & Logistics, Information & Communication, Smart City (TLICSC 2018), pp. 387–392. Atlantis Press (2018)

    Google Scholar 

  10. Achille, A., Soatto, S.: Information dropout: learning optimal representations through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2897–2905 (2018)

    Article  Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Iberoamerican congress on pattern recognition, pp. 14–36. Springer, Heidelberg (2012)

    Google Scholar 

  13. Carreira-Perpinan, M.A., Hinton, G.: On contrastive divergence learning. In: International Workshop on Artificial Intelligence and Statistics, pp. 33–40. PMLR (2005)

    Google Scholar 

  14. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  15. Mnih, V., Larochelle, H., Hinton, G.E.: Conditional restricted Boltzmann machines for structured output prediction. arXiv preprint arXiv:1202.3748 (2012)

  16. Yu, D., Deng, L.: Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Process. Mag. 28(1), 145–154 (2010)

    Article  Google Scholar 

  17. Deng, L., Li, X.: Machine learning paradigms for speech recognition: an overview. IEEE Trans. Audio Speech Lang. Process. 21(5), 1060–1089 (2013)

    Article  Google Scholar 

  18. Arikan, E.: Channel polarization: a method for constructing capacity achieving codes. In: 2008 IEEE International Symposium on Information Theory. Toronto Canada, 1173–1177 (2008)

    Google Scholar 

  19. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao, C., Fei, Z., Yuan, J., Kuang, J.: Low complexity list successive cancellation decoding of polar codes. IET Commun. 8(17), 3145–3149 (2014)

    Article  Google Scholar 

  21. Tal, I., Vardy, A.: List decoding of polar codes. IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, K., Niu, K., Lin, J.R.: List successive cancellation decoding of polar codes. Electron. Lett. 48(9), 500–501 (2012)

    Article  Google Scholar 

  23. Chiu, M.C., Wu, W.D.: Reduced-complexity SCL decoding of multi-CRC-aided polar codes. arXiv preprint arXiv:1609.08813 (2016)

  24. Li, B., Shen, H., Tse, D.: An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Commun. Lett. 16(12), 2044–2047 (2012)

    Article  Google Scholar 

  25. Yuan, B., Parhi, K.K.: Architecture optimizations for BP polar decoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2654–2658. IEEE (2013)

    Google Scholar 

  26. Zhang, Y., Liu, A., Pan, X., Ye, Z., Gong, C.: A modified belief propagation polar decoder. IEEE Commun. Lett. 18(7), 1091–1094 (2014)

    Article  Google Scholar 

  27. Arlı, A.Ç., Gazi, O.: Noise-aided belief propagation list decoding of polar codes. IEEE Commun. Lett. 23(8), 1285–1288 (2019)

    Article  Google Scholar 

  28. Elkelesh, A., Ebada, M., Cammerer, S., Ten Brink, S.: Belief propagation list decoding of polar codes. IEEE Commun. Lett. 22(8), 1536–1539 (2018)

    Article  Google Scholar 

  29. O'Shea, T.J., Karra, K., Clancy, T.C.: Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. In: 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 223–228. IEEE (2016)

    Google Scholar 

  30. Gruber, T., Cammerer, S., Hoydis, J., & ten Brink, S.: On deep learning-based channel decoding. In: 2017 51st Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2017)

    Google Scholar 

  31. Xu, W., Wu, Z., Ueng, Y. L., You, X., Zhang, C.: Improved polar decoder based on deep learning. In 2017 IEEE International workshop on signal processing systems (SiPS), pp. 1–6. IEEE (2017)

    Google Scholar 

  32. 汤佳杰. Polar 码译码算法研究 (2020)

    Google Scholar 

  33. Rao, W., Liu, Z., Huang, L., Sun, J., Dai, L.: CNN-SC decoder for polar codes under correlated noise channels. In: 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), pp. 748–751. IEEE (2020)

    Google Scholar 

  34. Puhalanthi, N., Lin, D.-T.: Effective multiple person recognition in random video sequences using a convolutional neural network. Multimed. Tools Appl. 79(15–16), 11125–11141 (2019). https://doi.org/10.1007/s11042-019-7323-z

    Article  Google Scholar 

  35. Liu, R., Wei, S., Zhao, Y., Yang, Y.: Indexing of the CNN features for the large scale image search. Multimed. Tools Appl. 77(24), 32107–32131 (2018). https://doi.org/10.1007/s11042-018-6210-3

    Article  Google Scholar 

  36. Liao, Z., Carneiro, G.: A deep convolutional neural network module that promotes competition of multiple-size filters. Pattern Recogn. 71, 94–105 (2017)

    Article  Google Scholar 

  37. Ye, B., Feng, G., Cui, A., Li, M.: Learning question similarity with recurrent neural networks. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 111–118. IEEE (2017)

    Google Scholar 

  38. Neculoiu, P., Versteegh, M., Rotaru, M.: Learning text similarity with siamese recurrent networks. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp. 148–157 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61801327, in part by the Doctor Fund of Tianjin Normal University under Grant 043135202-XB1711, in part by the Natural Science Foundation of Tianjin City under Grant 18JCYBJC86400, and in part by the Tianjin Higher Education Creative Team Funds Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Liu, Y. (2023). Survey on Decoding Schemes of the Polar Code Using the Deep Learning. In: Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2022. Lecture Notes in Electrical Engineering, vol 873. Springer, Singapore. https://doi.org/10.1007/978-981-99-1260-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1260-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1259-9

  • Online ISBN: 978-981-99-1260-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics