Skip to main content

Multi-feature Extraction of Mineral Zone of Tabling Through Deep Semantic Segmentation

  • Conference paper
  • First Online:
3D Imaging—Multidimensional Signal Processing and Deep Learning

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 349))

  • 257 Accesses

Abstract

Various segmentation algorithms for mineral zone images can only extract the boundary of the concentrate zone or the separation point of the mineral zone. To obtain fuller and more productive feature information from the mineral zone of Tabling’s separation, deep semantic segmentation models with DeepLab, U-net, and Xception are constructed. The image datasets of the industrial Tabling separation are collected and marked, and the corresponding mineral zone image dataset is constructed, the training and test sets are distributed in a certain proportion and imported into the deep semantic models for training. The training results of these models are compared, and the segmentation of the mineral zone images is evaluated. DeepLab-xception and DeepLab v3+ have the highest accuracy 0.9943 and mean intersection over the union value of 0.989. Finally, the DeepLab v3+ is adopted as the model for the image feature segmentation of Tabling’s mineral zone. Through the corresponding image processing and feature extraction operators, the effective multi-scale features of Tabling’s mineral zone can be well extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H. Z.: Application progress and prospects of gravity separation equipment in metal ore beneficiation in my country. Non-Ferr. Metals (mineral processing), (Supplement 1), 18–23 (2011)

    Google Scholar 

  2. Abaka-Wood, G.B., Quast, K., Zanin, M., Addai-Mensah, J., Skinner, W.: A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technol. 344, 897–913 (2019)

    Article  Google Scholar 

  3. Keshun, Y., Huizhong, L.: Intelligent deployment solution for tabling adapting deep learning, in IEEE Access, 11, pp. 22201–22208 (2023). https://doi.org/10.1109/ACCESS.2023.3234075

  4. Zhao, Y.L., Zhang, Y.M., Bao, S.X., et al.: Loose-layered model in the process of vanadium extraction and pre-concentration and separation from stone coal. Trans. Nonferrous Metals Soc. China 24(02), 528–535 (2014)

    Article  Google Scholar 

  5. You, Keshun, and Huizhong Liu. "Research on optimization of control parameters of gravity shaking table." Scientific Reports 13.1 (2023): 1133.

    Google Scholar 

  6. He, L.F., Huang, S.W.: Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240, 152–174 (2017)

    Article  Google Scholar 

  7. You, K., Qiu, G., Gu, Y.: Rolling bearing fault diagnosis using hybrid neural network with principal component analysis[J]. Sensors 22(22), 8906 (2022)

    Article  Google Scholar 

  8. Liu, L.M., Li, Q., Wu, T., et al.: The design and application of the automatic ore access device of the shaker. Gold 39(10), 48–51 (2018)

    Google Scholar 

  9. Yang, W.W., He, Q.L., Lan, X.X., et al.: Development and application of intelligent inspection robot for mineral processing shaker. Non-Ferr. Metals (Mineral Processing Part) 05, 102–106 (2020)

    Google Scholar 

  10. Wu, T., Yang, W. W., Guo, J. H., et al.: An intelligent control method for beneficiation shaking table. Beijing: CN108519781A, 2018-09-11 (2018)

    Google Scholar 

  11. Zarie, M., Jahedsaravani, A., Massinaei, M.: Flotation froth image classification using convolutional neural networks. Miner. Eng. 155, 106443 (2020)

    Article  Google Scholar 

  12. Wang, L.G., Chen, S.J., Jia, M.T., et al.: Deep learning-based image recognition and beneficiation method of wolframite. Chin. J. Nonferrous Metals 30(05), 1192–1201 (2020)

    Google Scholar 

  13. Keshun Y.: Study on model construction and control parameter optimization of ore dressing shaking bed sorting process [D]. Jiangxi University of Technology (2022). https://doi.org/10.27176/d.cnki.gnfyc.2022.000557

  14. Liu, Y., Zhang, Z., Liu, X., et al.: Efficient image segmentation based on deep learning for mineral image classification. Adv. Powder Technol. 32(10), 3885–3903 (2021)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Zhang, Z., Liu, X., Wang, L., Xia, X.: Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size. Miner. Eng. 172, 107020 (2021)

    Article  Google Scholar 

  16. Wang, X., Zhou, J., Wang, Q., Liu, D., Lian, J.: An unsupervised method for extracting semantic features of flotation froth images. Miner. Eng. 176, 107344 (2022)

    Article  Google Scholar 

  17. Luo, Y. W., Zheng, L., Guan, T., et al.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. ArXiv preprint., arXiv:1809.09478 (2019)

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3431–3440 (2015).

    Google Scholar 

  19. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer, Cham. (2015)

    Google Scholar 

  21. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). arXiv preprint arXiv:1511.07122

  22. Chen, L. C., Papandreou, G., Kokkinos, I., et al.: Semanticimage segmentation with deep convolutional nets and fully connected crfs (2014). arXiv preprint arXiv:1412.7062

  23. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Deeplab: Semantic image segmentation with deep convolutionalnets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  24. Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2881–2890 (2017)

    Google Scholar 

  25. Peng, C., Zhang, X., Yu, G., et al.: Large kernel matters--improve semantic segmentation by global convolutional network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.4353–4361 (2017)

    Google Scholar 

  26. Chen, L. C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv preprint arXiv:1706.05587

  27. Filippo, M.P., Gomes, O.D.F.M., da Costa, G.A.O.P., Mota, G.L.A.: Deep Semantic Segmentation of opaque and non-opaque minerals from epoxy resin in reflected light microscopy images. Miner. Eng. 170, 107007 (2021)

    Article  Google Scholar 

  28. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  29. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1251–1258 (2017)

    Google Scholar 

  30. Liu, H., You, K.: Research on image multi-feature extraction of ore belt and real-time monitoring of the tabling by semantic segmentation of DeepLab V3+. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds.) Advances in Artificial Intelligence and Security. ICAIS 2022. Communications in Computer and Information Science, vol 1586. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06767-9_3

  31. Sun, B., et al.: An integrated multi-mode model of froth flotation cell based on fusion of flotation kinetics and froth image features. Miner. Eng. 172, 107169 (2021)

    Article  Google Scholar 

  32. Li, S.N., Hua, J.G., Li, J.M., et al.: Optimal non-line-of-sight suppression localization algorithm using Helen’s formula. J. Sens. Technol. 31(2), 5 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the experimental platform and technical assistance provided by some institutions and corporations, we extend their sincere gratitude to Jiangxi province K&R development project and fund project from Talent Project for various help and understanding throughout his work.

Fund Project

Innovative talent project: Jiangxi province “double thousand plan” (JXSQ2018101046); Jiangxi Province K&R Development Project (20212BBE53026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., You, K. (2023). Multi-feature Extraction of Mineral Zone of Tabling Through Deep Semantic Segmentation. In: Patnaik, S., Kountchev, R., Tai, Y., Kountcheva, R. (eds) 3D Imaging—Multidimensional Signal Processing and Deep Learning. Smart Innovation, Systems and Technologies, vol 349. Springer, Singapore. https://doi.org/10.1007/978-981-99-1230-8_5

Download citation

Publish with us

Policies and ethics