Skip to main content

Contaminant Mixtures and Reproduction in Aquatic Organisms

  • Chapter
  • First Online:
Xenobiotics in Aquatic Animals
  • 209 Accesses

Abstract

The reproductive performance of aquatic organisms is vital for the assessment of sublethal impacts of contaminants that can be predictive of changes at the population level of ecosystems. However, the role of contaminant mixtures, and the potential interactions among them, may have effects on organisms that can be challenging to identify and quantify. The goal of this chapter is to review our current understanding of mixtures on the reproductive performance of aquatic organisms (e.g., invertebrates, fish), current tools used to assess for interactions, identification of gaps still needing to be addressed in the field, and proposed approaches to continue advancing reproduction-based research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankley GT, Jensen KM, Kahl MD, Korte JJ, Makynen EA (2001) Description and evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1276–1290

    Article  CAS  PubMed  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010a) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. https://doi.org/10.1002/etc.34

    Article  CAS  PubMed  Google Scholar 

  • Ankley GT, Jensen KM, Kahl MD, Durhan EJ, Makynen EA, Cavallin JE, Martinović D, Wehmas LC, Mueller ND, Villeneuve DL (2010b) Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquat Toxicol 99:389–396. https://doi.org/10.1016/j.aquatox.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  • Arcand-Hoy LD, Benson WH (1998) Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem 17:49–57

    Article  CAS  Google Scholar 

  • Arnold KE, Brown AR, Brown AR, Ankley GT, Sumpter JP (2014) Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Philos Trans R Soc B Biol Sci 369:20130569. https://doi.org/10.1098/rstb.2013.0569

    Article  Google Scholar 

  • Artigas J, Arts G, Babut M, Caracciolo AB, Charles S, Chaumot A et al (2012) Towards a renewed research agenda in ecotoxicology. Environ Pollut 160:201–206

    Article  CAS  PubMed  Google Scholar 

  • Balistrieri LS, Mebane CA (2014) Predicting the toxicity of metal mixtures. Sci Total Environ 466–467:788–799. https://doi.org/10.1016/j.scitotenv.2013.07.034

    Article  CAS  PubMed  Google Scholar 

  • Beketov MA, Liess M (2012) Ecotoxicology and macroecology—time for integration. Environ Pollut 162:247–254. https://doi.org/10.1016/j.envpol.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar SP, Reiner EJ, Hayton A, Fletcher R, MacPherson K (2008) Converting toxic equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one toxic equivalency factor (TEF) scheme to another. Environ Int 34:915–921. https://doi.org/10.1016/j.envint.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Thorne PS, Wichman M (2007) Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect 2:308–312

    Article  Google Scholar 

  • Carr JA, Patiño R (2011) The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations. Gen Comp Endocrinol 170:299–312

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro MC, Morrissey CA, Headley JV, Peru KM, Liber K (2016) Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environ Toxicol Chem 36:372–382

    Article  PubMed  Google Scholar 

  • Chow MI, Lundin JI, Mitchell CJ, Davis JW, Young G, Scholz NL, McIntyre JK (2019) An urban stormwater runoff mortality syndrome in juvenile coho salmon. Aquat Toxicol 214:105231

    Article  CAS  PubMed  Google Scholar 

  • Cirillo T, Amodio Cocchieri R, Fasano E, Lucisano A, Tafuri S, Ferrante MC, Carpenè E, Andreani G, Isani G (2012) Cadmium accumulation and antioxidant responses in sparus aurata exposed to waterborne cadmium. Arch Environ Contam Toxicol 62:118–126. https://doi.org/10.1007/s00244-011-9676-9

    Article  CAS  PubMed  Google Scholar 

  • Conners KA, Brill JL, Norberg-King T, Barron MG, Carr G, Belanger SE (2022) Daphnia magna and Ceriodaphnia dubia have similar sensitivity in standard acute and chronic toxicity tests. Environ Toxicol 41:134–147

    Article  Google Scholar 

  • Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sens Switz 12:12741–12771

    Article  CAS  Google Scholar 

  • Covert SA, Shoda ME, Stackpoole SM, Stone WW (2020) Pesticide mixtures show potential toxicity to aquatic life in U.S. streams, water years 2013–2017. Sci Total Environ 745:141285

    Article  CAS  PubMed  Google Scholar 

  • de Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24:2665–2676

    Article  PubMed  Google Scholar 

  • de Zwart D, Adams W, Galay Burgos M, Hollender J, Junghans M, Merrington G, Muir D, Parkerton T, De Schamphelaere KAC, Whale G, Williams R (2018) Aquatic exposures of chemical mixtures in urban environments: approaches to impact assessment. Environ Toxicol Chem 37:703–714. https://doi.org/10.1002/etc.3975

    Article  CAS  PubMed  Google Scholar 

  • Dethloff GM, Schlenk D, Hamm JT, Bailey HC (1999) Alterations in physiological parameters of rainbow trout (Oncorhynchus mykiss) with exposure to copper and copper/zinc mixtures. Ecotoxicol Environ Saf 42:253–264

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio RT, Hinton DE (eds) (2008) The toxicology of fishes, 1st edn. CRC. https://doi.org/10.1201/9780203647295

    Book  Google Scholar 

  • Driessnack MK, Dubé MG, Rozon-Ramilo LG, Jones PD, Wiramanaden CIE, Pickering IJ (2011) The use of field-based mesocosm systems to assess the effects of uranium milling effluent on fathead minnow (Pimephales promelas). Ecotoxicology 20:1209–1224

    Article  CAS  PubMed  Google Scholar 

  • Driessnack MK, Matthews AL, Raine JC, Niyogi S (2016) Interactive effects of chronic waterborne copper and cadmium exposure on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Comp Biochem Physiol Part C Toxicol Pharmacol 179:165–173

    Article  CAS  Google Scholar 

  • Driessnack MK, Jamwal A, Niyogi S (2017a) Interactions of waterborne cadmium and zinc during chronic exposure on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Ecotoxicol Environ Saf 140:65–75

    Article  CAS  PubMed  Google Scholar 

  • Driessnack MK, Jamwal A, Niyogi S (2017b) Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Chemosphere 185:964–974

    Article  CAS  PubMed  Google Scholar 

  • Environment Canada (2000) Biological test method: acute lethality of effluents to Daphnia magna. Environment Canada, Ottawa

    Google Scholar 

  • Feist BE, Buhle ER, Baldwin DH, Spromberg JA, Damm SE, Davis JW et al (2017) Roads to ruin: conservation threats to a sentinel species across an urban gradient. Ecol Appl 27:2382–2396

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandhi N, Gewurtz SB, Drouillard KG, Kolic T, MacPherson K, Reiner EJ, Bhavsar SP (2019) Dioxins in Great Lakes fish: past, present and implications for future monitoring. Chemosphere 222:479–488. https://doi.org/10.1016/j.chemosphere.2018.12.139

    Article  CAS  PubMed  Google Scholar 

  • Gauthier C, Couture P, Pyle GG (2006) Metal effects on fathead minnow (Pimephales promelas) under field and laboratory conditions. Ecotoxicol Environ Saf 63:353–364

    Article  CAS  PubMed  Google Scholar 

  • Gessner MO, Tlili A (2016) Fostering integration of freshwater ecology with ecotoxicology. Freshw Biol 61:1991–2001

    Article  Google Scholar 

  • Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32:32–48

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Han J, Wang X, Guo Y, Zhou B (2016) The binary mixtures of megestrol acetate and 17a-ethynylestradiol adversely affect zebrafish reproduction. Environ Pollut 213:776–784

    Article  CAS  PubMed  Google Scholar 

  • Jamwal A, Shekh K (2021) Endocrine disruption in freshwater fish from contaminants of emerging concern. In: Sundaray JK, Rather MA, Kumar S, Agarwal D (eds) Recent updates in molecular endocrinology and reproductive physiology of fish. Springer, Singapore

    Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24:2701–2713

    Article  CAS  PubMed  Google Scholar 

  • Kamunde C, MacPhail R (2011) Metal-metal interactions of dietary cadmium, copper and zinc in rainbow trout, Oncorhynchus mykiss. Ecotoxicol Environ Saf 74:658–667

    Article  CAS  PubMed  Google Scholar 

  • Kavlock R, Daston G (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environ Health 104:715

    Google Scholar 

  • Kerdivel G, Habauzit D, Pakdel F (2013) Assessment and molecular actions of endocrine-disrupting chemicals that interfere with estrogen receptor pathways. Int J Endocrinol 2013:501851

    Article  PubMed  PubMed Central  Google Scholar 

  • Knapen D, Bervoets L, Verheyen E, Blust R (2004) Resistance to water pollution in natural gudgeon (Gobio gobio) populations may be due to genetic adaptation. Aquat Toxicol 67:155–165

    Article  CAS  PubMed  Google Scholar 

  • Kramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ et al (2011) Adverse outcome pathways and ecological risk assessment: bridging to population-level effects. Environ Toxicol Chem 30:64–76

    Article  CAS  PubMed  Google Scholar 

  • Landis W, Sofield R, Yu MH (2010) Introduction to environmental toxicology: molecular substructures to ecological landscapes, 4th edn. CRC, Boca Raton, FL. https://doi.org/10.1201/9781439804117

    Book  Google Scholar 

  • Lemly AD (1993) Teratogenic effects of selenium in natural populations of freshwater fish. Ecotoxicol Environ Saf 26:181–204

    Article  CAS  PubMed  Google Scholar 

  • Lemly AD (1999) Selenium transport and bioaccumulation in aquatic ecosystems: a proposal for water quality criteria based on hydrological units. Ecotoxicol Environ Saf 42:150–156

    Article  CAS  PubMed  Google Scholar 

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  CAS  PubMed  Google Scholar 

  • Liem AKD, Fürst P, Rappe C (2000) Exposure of populations to dioxins and related compounds. Food Addit Contam 17:241–259

    Article  CAS  PubMed  Google Scholar 

  • Liess M, Foit K, Knillmann S, Schäfer RB, Liess HD (2016) Predicting the synergy of multiple stress effects. Sci Rep 6:32965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocrinol 165:367–389

    Article  CAS  PubMed  Google Scholar 

  • Maloney EM, Morrissey CA, Headley JV, Peru KM, Liber K (2018) Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus? Ecotoxicol Environ Saf 156:354–365

    Article  CAS  PubMed  Google Scholar 

  • McIntyre JK, Prat J, Cameron J, Wetzel J, Mudrock E, Peter KT, Tian Z, Mackenzie C, Lundin J, Stark JD, King K, Davis JW, Kolodziej EP, Scholz NL (2021) Treading water: tire wear particle leachate recreates an urban runoff mortality syndrome in coho but not chum Salmon. Environ Sci Technol 55:11767–11774. https://doi.org/10.1021/acs.est.1c03569

    Article  CAS  PubMed  Google Scholar 

  • Meyers JS, Adams WJ, Brix KV, Luoma SN, Mount DR (2005) Toxicity of dietborne metals to aquatic organisms. SETAC Press, Pensacola, FL

    Google Scholar 

  • Miles JC, Hua J, Sepulveda MS, Krupke CH, Hoverman JT (2017) Effects of clothianidin on aquatic communities: evaluating the impacts of lethal and sublethal exposure to neonicotinoids. PloS One 12:e0174171

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau CJ, Klerks PL, Haas CN (1999) Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow (Cyprinodon variegatus). Arch Environ Contam Toxicol 37:251–257

    Article  CAS  PubMed  Google Scholar 

  • Moyle PB, Cech JJ (eds) (2005) Fishes: an introduction to ichthyology. Fifth Edition, Pearson Prentice Hall

    Google Scholar 

  • Müller A, Österlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: a review of sources. Sci Total Environ 709. https://doi.org/10.1016/j.scitotenv.2019.136125

  • Mumtaz M (ed) (2010) Principles and practice of mixtures toxicology. Wiley, Hoboken, NJ. https://doi.org/10.1002/9783527630196

    Book  Google Scholar 

  • Nagahama Y (1994) Endocrine regulation of gametogenesis in fish. Int J Dev Biol 38:217–229

    CAS  PubMed  Google Scholar 

  • Newman MC (ed) (2010) Fundamentals of ecotoxicolgy, 3rd edn. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Nkoom M, Lu G, Liu J (2022) Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. Environ Sci Pollut Res 29:58963–58979

    Article  CAS  Google Scholar 

  • Norris DO, Lopez KH (eds) (2011) Hormones and reproduction of vertebrates. Fishes, vol 1. Academic Press/Elsevier, Waltham, MA

    Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG, Wallace A (2003) Effects of metal mixtures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess Int J 9:795–811

    Article  CAS  Google Scholar 

  • Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ (2020) Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc R Soc B 287:20200421. https://doi.org/10.1098/rspb.2020.0421

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottinger MA, Wu J, Pelican K (2002) Neuroendocrine regulation of reproduction in birds and clinical applications of GnRH analogues in birds and mammals. Semin Avian Exotic Pet Med 11:71–79

    Article  Google Scholar 

  • Ouellet JD, Dubé MG, Niyogi S (2013) A single metal, metal mixture, and whole-effluent approach to investigate causes of metal mine effluent effects on fathead minnows (Pimephales promelas). Water Air Soil Pollut 224(3):1462

    Article  Google Scholar 

  • Parrott JL (2005) Overview of methodology and endpoints in fathead minnow lifecycle tests assessing pulp and paper mill effluent. Water Qual Res J Canada 40:334–346

    Article  CAS  Google Scholar 

  • Paschoalini AL, Savassi LA, Weber AA, Moreira DP, Ribeiro YM, Rizzo E et al (2021) Evaluation of the oestrogenic potential of oestrone and bisphenol-a on the reproduction of Astyanax bimaculatus males after subacute exposure. Fish Physiol Biochem 47:797–810

    Article  CAS  PubMed  Google Scholar 

  • Pérez E, Hoang TC (2017) Chronic toxicity of binary-metal mixtures of cadmium and zinc to Daphnia magna. Environ Toxicol Chem 36:2739–2749. https://doi.org/10.1002/etc.3830

    Article  CAS  PubMed  Google Scholar 

  • Quinn TP (2018) The behavior and ecology of pacific salmon and trout, 2nd edn. University of Washington Press, Seattle, WA

    Google Scholar 

  • Rand GM (ed) (1995) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, 2nd edn. CRC, Boca Raton, FL. https://doi.org/10.1201/9781003075363

    Book  Google Scholar 

  • Rubach MN, Ashauer R, Buchwalter DB, De Lange HJ, Hamer M, Preuss TG, Töpke K, Maund SJ (2011) Framework for traits-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186. https://doi.org/10.1002/ieam.105

    Article  PubMed  Google Scholar 

  • Runnalls T, Beresford N, Kugathas S, Margiotta-Casaluci L, Scholze M, Scott AP, Sumpter JP (2015) From single chemicals to mixtures—reproductive effects of levonorgestrel and ethinylestradiol on the fathead minnow. Aquat Toxicol 169:152–167

    Article  CAS  PubMed  Google Scholar 

  • Schäfer RB, Piggott JJ (2018) Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob Chang Biol 24:1817–1826

    Article  PubMed  Google Scholar 

  • Schmidt TS, Miller JL, Mahler BJ, Van Metre PC, Nowell LH, Sandstrom MW et al (2022) Ecological consequences of neonicotinoid mixtures in streams. Sci Adv 8:eabj8182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz NL, Myers MS, McCarthy SG, Labenia JS, McIntyre JK, Ylitalo GM, Rhodes LD, Laetz CA, Stehr CM, French BL, McMillan B, Wilson D, Reed L, Lynch KD, Damm S, Davis JW, Collier TK (2011) Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams. PloS One 6:e28013. https://doi.org/10.1371/journal.pone.0028013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR (2013) Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 43:45–72

    Article  CAS  PubMed  Google Scholar 

  • Shadid N, Liess M, Knillmann S (2019) Environmental stress increases synergistic effects of pesticide mixtures on Daphnia manga. Environ Sci Technol 53:12586–12593. https://doi.org/10.1021/acs.est.9b04293

    Article  CAS  Google Scholar 

  • Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res 4:3–32

    Article  CAS  Google Scholar 

  • Spromberg JA, Scholz NL (2011) Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watershed of the Pacific northwest, USA. Integr Environ Assess Manag 7:648–656

    Article  PubMed  Google Scholar 

  • Stark JD, Banks JE, Vargas R (2004) How risky is risk assessment: the role that life history strategies play in susceptibility of species to stress. Proc Natl Acad Sci 101:732–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark JD, McIntyre JK, Banks JE (2020) Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants. Sci Rep 10:1–7

    Article  Google Scholar 

  • Sumpter JP (2009) Protecting aquatic organisms from chemicals: the harsh realities. Phil Trans R Soc A 367:3987–3894

    Article  Google Scholar 

  • Suter GW, Rosen AE, Linder E, Parkhurst DF (1987) Endpoints for responses of fish to chronic toxic exposures. Environ Toxicol Chem 6:793–809

    Article  CAS  Google Scholar 

  • Thompson PL, MacLennan MM, Vinebrooke RD (2018a) An improved null model for assessing the net effects of multiple stressors on communities. Glob Chang Biol 24:517–525

    Article  PubMed  Google Scholar 

  • Thompson PL, MacLennan MM, Vinebrooke RD (2018b) Species interactions cause non-additive effects of multiple environmental stressors on communities. Ecosphere 9:e02518

    Article  Google Scholar 

  • Thrupp TJ, Runnalls TJ, Scholze M, Kugathas S, Kortenkamp A, Sumpter JP (2018) The consequences of exposure to mixtures of chemicals: something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones. Sci Total Environ 619–620:1482–1492

    Article  PubMed  Google Scholar 

  • Tian Z, Zhao H, Peter KT, Gonzalez M, Wetzel J, Wu C et al (2021) A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 371:185–189

    Article  CAS  PubMed  Google Scholar 

  • Urbatzka R, Rocha E, Reis B, Cruzeiro C, Monteiro RAF, Rocha MJ (2012) Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebra fi sh. Environ Pollut 164:28–35

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency (1992) Framework for ecological risk assessment. No. EPA/630/R-92/001. Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (1996a) Fish early-life stage toxicity test. Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (1996b) Ecological effects test guideline: daphnid chronic toxicity test. Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (1998) Guidelines for ecological risk assessment. No. EPA/630/R-95/002F. Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (2000) Method guidance and recommendations for whole effluent toxicity (WET) testing. Washington, DC

    Google Scholar 

  • van den Berg M, Birnbaum L, Bosveld A, BrunstroemB CP, Feeley M (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg M, Birnbaum LS, DenisonM DVM, Farland W, Feeley M et al (2006) The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241

    Article  PubMed  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH et al (2013) Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod Toxicol 38:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versteeg DJ, Stalmans M, Janssen C (1997) Ceriodaphnia and daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 340:869–892

    Article  Google Scholar 

  • Villeneuve DL, Garcia-Reyero N (2011) Vision & strategy: predictive ecotoxicology in the 21st century. Environ Toxicol Chem SETAC 30:1–8

    Article  CAS  Google Scholar 

  • Walker CH, Sibly RM, Sibly RM, Peakall DB (2005) Principles of ecotoxicology, 3rd edn. CRC, Boca Raton, FL. https://doi.org/10.1201/9781439894224

    Book  Google Scholar 

  • Weir SM, Flynn RW, Scott DE, Yu S, Lance SL (2016) Environmental levels of Zn do not protect embryos from cu toxicity in three species of amphibians. Environ Pollut 214:161–168. https://doi.org/10.1016/j.envpol.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  • Weltzien FA, Andersson E, Andersen O, Shalchian-Tabrizi K, Norberg B (2004) The brain-pituitary-gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A 137:447–477

    Article  Google Scholar 

  • Werner J, Ouellet JD, Cheng CS, Ju YJ, Law RD (2010) Pulp and paper mill effluents induce distinct gene expression changes linked to androgenic and estrogenic responses in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 29:430–439

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS et al (2022) Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci U S A 119:e2113947119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Guanghua L, Jianchao L (2016) Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): effects on growth, development, and reproduction. Environ Sci Pollut Res 23:18222–18228

    Article  CAS  Google Scholar 

  • Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165:438–455

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa K. Driessnack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Driessnack, M.K. (2023). Contaminant Mixtures and Reproduction in Aquatic Organisms. In: Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I. (eds) Xenobiotics in Aquatic Animals. Springer, Singapore. https://doi.org/10.1007/978-981-99-1214-8_8

Download citation

Publish with us

Policies and ethics