Skip to main content

Pesticide and Xenobiotic Metabolism in Aquatic Organisms

  • Chapter
  • First Online:
Xenobiotics in Aquatic Animals

Abstract

Environmental contamination caused by the abusage of chemical compounds is a worldwide phenomenon, arising as a result of human activities and population growth. There are various pollutants ranging from the pharmaceutical to the agricultural source. In recent times, there is an increasing demand for pharmaceuticals, which in turn has placed a matter of concern for public sector. Additionally, the usage of unlawful drugs has resulted in the discharge of harmful carcinogens into the water system. The release of these chemicals poses a number of short- and long-term effects on the natural ecosystem, taking into consideration the harmful effects of the chemical pollutants and their unavoidable usage in the modern era. This chapter overlooks some of the majorly employed chemicals (xenobiotics and pesticides), and their fate in the aquatic community, their modes of action, and some of the mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelkader E, Nadjia L, Ahmed B (2011) Degradation study of phenazin neutral red from aqueous suspension by paper sludge. J Chem Eng Process Technol 2:109–114

    CAS  Google Scholar 

  • Adnan A, Indulkar ST (2017) Chronic effect of Imidacloprid pesticide, on carcass composition of common carp fingerlings. Int J Agric Sci Res 7(2):343–348

    Google Scholar 

  • Adnan A, Indulkar ST, Pai R (2016) Sublethal effect of Buprofezin pesticide on carcass composition of Cyprinus carpio communis fingerlings. J Exp Zool India 20(1):269–272

    Google Scholar 

  • Aly OA, Shehata SA, Farag H (1984) Uptake and accumulation of selected herbicides by the freshwater alga Scenedesmus. Arch Environ Contam Toxicol 13(6):701–705

    Article  CAS  Google Scholar 

  • Anderson RL (1982) Toxicity of fenvalerate and permethrin to several nontarget aquatic invertebrates. Environ Entomol 11(6):1251–1257

    Article  CAS  Google Scholar 

  • Anderson RL, DeFoe DL (1980) Toxicity and bioaccumulation of endrin and methoxychlor in aquatic invertebrates and fish. Environ Pollut Ser A Ecol Biol 22(2):111–121

    Article  CAS  Google Scholar 

  • Arand M, Cronin A, Adamska M, Oesch F (2005) Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol 400:569–588. https://doi.org/10.1016/S0076-6879(05)00032-7

    Article  CAS  PubMed  Google Scholar 

  • Arnot JA, Gobas FA (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14(4):257–297

    Article  CAS  Google Scholar 

  • Arslan P, Yurdakok-Dikmen B, Kuzukiran O, Ozeren SC, Filazı A (2021) Effects of acetamiprid and flumethrin on Unio sp. primary cells. Biologia 76(4):1359–1365

    Article  CAS  Google Scholar 

  • Arya P, Haq SA (2019) Effects of xenobiotics and their biodegradation in marine life. In: Smart bioremediation technologies. Academic Press, Cambridge, MA, pp 63–81

    Google Scholar 

  • Arya M, Patil S, Shruti N (2019) Xenobiotics and their adverse impact on living organisms. J Curr Microbiol 23(7):348–357

    Google Scholar 

  • Ashauer R, Boxall A, Brown C (2006) Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex. Arch Environ Contam Toxicol 51(4):542–548

    Article  CAS  PubMed  Google Scholar 

  • Axelman J, Broman D, Näf C, Pettersen H (1995) Compound dependence of the relationship log Kow and log BCFL. Environ Sci Pollut Res 2(1):33–36

    Article  CAS  Google Scholar 

  • Babalola OO, Van Wyk JH (2018) Comparative early life stage toxicity of the African clawed frog, Xenopus laevis following exposure to selected herbicide formulations applied to eradicate alien plants in South Africa. Arch Environ Contam Toxicol 75(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Banjoko B (2014) Environmental pharmacology—an overview. In: Pharmacology and therapeutics. Intech, Rijeka

    Google Scholar 

  • Barron MG (1990) Bioconcentration. Will water-borne organic chemicals accumulate in aquatic animals? Environ Sci Technol 24(11):1612–1618

    Article  CAS  Google Scholar 

  • Bartlett AJ, Borgmann U, Dixon DGE, Atchelor SPB, Maguire RJ (2004) Tributyltin uptake and depuration in Hyalella azteca: implications for experimental design. Environ Toxicol Chem 23(2):426–434

    Article  CAS  PubMed  Google Scholar 

  • Basack SB, Oneto ML, Verrengia Guerrero NR, Kesten EM (1997) Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea. Bull Environ Contam Toxicol 58(3):497–503

    Article  CAS  PubMed  Google Scholar 

  • Baturo W, Lagadic L (1996) Benzo [a] pyrene hydroxylase and glutathione S-transferase activities as biomarkers in Lymnaea palustris (Mollusca, Gastropoda) exposed to atrazine and hexachlorobenzene in freshwater mesocosms. Environ Toxicol Chem 15(5):771–781

    Article  CAS  Google Scholar 

  • Bauer I, Weigelt S, Ernst W (1989) Biotransformation of hexachlorobenzene in the blue mussel (Mytilus edulis). Chemosphere 19(10-11):1701–1707

    Article  CAS  Google Scholar 

  • Bedford JW, Zabik MJ (1973) Bioactive compounds in the aquatic environment: uptake and loss of DDT and dieldrin by freshwater mussels. Arch Environ Contam Toxicol 1(2):97–111

    Article  CAS  PubMed  Google Scholar 

  • Boryslawskyj M, Garrood T, Stanger M, Pearson T, Woodhead D (1988) Role of lipid/water partitioning and membrane composition in the uptake of organochlorine pesticides into a freshwater mussel. Mar Environ Res 24(1–4):57–61

    Article  CAS  Google Scholar 

  • Böttcher T, Schroll R (2007) The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism. Chemosphere 66(4):684–689

    Article  PubMed  Google Scholar 

  • Brock TC, Crum SJH, Van Wijngaarden R, Budde BJ, Tijink J, Zuppelli A, Leeuwangh P (1992) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos. Arch Environ Contam Toxicol 23(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Brock TCM, Lahr J, Van den Brink PJ (2000) Ecological risks of pesticides in freshwater ecosystems; Part 1: herbicides (No. 88). Alterra, Wageningen

    Google Scholar 

  • Brodie ED, Ridenhour BJ, Brodie ED (2002) The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56(10):2067–2082

    PubMed  Google Scholar 

  • Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24(2):464–469

    Article  CAS  PubMed  Google Scholar 

  • Butcherine P, Kelaher BP, Benkendorff K (2022) Assessment of acetylcholinesterase, catalase, and glutathione S-transferase as biomarkers for imidacloprid exposure in penaeid shrimp. Aquat Toxicol 242:106050

    Article  CAS  PubMed  Google Scholar 

  • Cajaraville MP, Cancio I, Ibabe A, Orbea A (2003) Peroxisome proliferation as a biomarker in environmental pollution assessment. Microsc Res Tech 61(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Canton JH, Greve PA, Slooff W, Van Esch GJ (1975) Toxicity, accumulation and elimination studies of α-hexachlorocyclohexane (α-HCH) with freshwater organisms of different trophic levels. Water Res 9(12):1163–1169

    Article  CAS  Google Scholar 

  • Canton JH, Vanesch GJ, Greve PA, Vanhellemond ABAM (1977) Accumulation and elimination of gamma-hexachlorocyclohexane (gamma-HCH) by the marine algae Chlamydomonas and Dunaliella. Water Res:111–115

    Google Scholar 

  • Cederbaum AI (2015) Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biol 4:60–73. https://doi.org/10.1016/j.redox.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Chaton PF, Ravanel P, Tissut M, Meyran JC (2002) Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites. Ecotoxicol Environ Saf 52(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • Clark JM, Symington SB (2011) Advances in the mode of action of pyrethroids. Top Curr Chem 314:49–72

    Article  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Connell DW (1988) Bioaccumulation behavior of persistent organic chemicals with aquatic organisms. Rev Environ Contam Toxicol 102:117–154

    CAS  PubMed  Google Scholar 

  • Crosby DG, Tucker RK (1971) Accumulation of DDT by Daphnia magna. Environ Sci Technol 5(8):714–716

    Article  CAS  Google Scholar 

  • Crossland NO (1984) Fate and biological effects of methyl paration in outdoor ponds and laboratory aquaria: II. Effects. Ecotoxicol Environ Saf 8(5):482–495

    Article  CAS  PubMed  Google Scholar 

  • Cuklev F, Gunnarsson L, Cvijovic M, Kristiansson E, Rutgersson C, Björlenius B, Larsson DJ (2012) Global hepatic gene expression in rainbow trout exposed to sewage effluents: a comparison of different sewage treatment technologies. Sci Total Environ 427:106–114

    Article  PubMed  Google Scholar 

  • Cuppen JG, Van den Brink PJ, Van der Woude H, Zwaardemaker N, Brock TC (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotoxicol Environ Saf 38(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Da Cuña RH, Lo Nostro FL, Shimabukuro V, Ondarza PM, Miglioranza KSB (2020) Bioaccumulation and distribution behavior of endosulfan on a cichlid fish: differences between exposure to the active ingredient and a commercial formulation. Environ Toxicol Chem 39(3):604–611

    Article  PubMed  Google Scholar 

  • Dar SA, Chatterjee A, Rather MA, Chetia D, Srivastava PP, Gupta S (2020) Identification, functional characterization and expression profiling of cytochrome p450 1A (CYP1A) gene in Labeo rohita against emamectin benzoate. Int J Biol Macromol 158:1268–1278

    Article  CAS  Google Scholar 

  • Day K, Kaushik NK (1987) The adsorption of fenvalerate to laboratory glassware and the alga Chlamydomonas reinhardii, and its effect on uptake of the pesticide by Daphnia galeata mendotae. Aquat Toxicol 10(2-3):131–142

    Article  CAS  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 5–6

    Google Scholar 

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20(1):84–98

    Article  CAS  PubMed  Google Scholar 

  • DeLorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56(6):516–520

    Article  CAS  Google Scholar 

  • DeNoyelles F, Kettle WD, Sinn DE (1982) The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology 63(5):1285–1293

    Article  CAS  Google Scholar 

  • DeNoyelles F, Dewey SL, Huggins DG, Kettle WD (2020) Aquatic mesocosms in ecological effects testing: detecting direct and indirect effects of pesticides. In: Aquatic mesocosm studies in ecological risk assessment. CRC, Boca Raton, FL, pp 577–603

    Chapter  Google Scholar 

  • Derr SK, Zabik MJ (1972) Biologically active compounds in the aquatic environment: The uptake and distribution of [1, 1-dichloro-2, 2-bis (p-chlorophenyl) ethylene], DDE by Chironomus tentans Fabricius (Diptera: Chironomidae). Trans Am Fish Soc 101(2):323–329

    Article  CAS  Google Scholar 

  • Dhanaraj PS, Kumar S, Lal R (1989) Bioconcentration and metabolism of aldrin and phorate by the blue-green algae Anabaena (ARM 310) and Aulosira fertilissima (ARM 68). Agr Ecosyst Environ 25(2–3):187–193

    Article  CAS  Google Scholar 

  • Diepens NJ, Pfennig S, Van den Brink PJ, Gunnarsson JS, Ruepert C, Castillo L (2014) Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J Environ Biol 35(sp. issue):73–84

    PubMed  Google Scholar 

  • Doggrell SA (1990) The membrane stabilizing and beta 1-adrenoceptor blocking activity of (+)-and (-)-propranolol on the rat left atria. Gen Pharmacol 21(5):677–680

    Article  CAS  PubMed  Google Scholar 

  • Donkin P, Widdows J, Evans SV, Staff FJ, Yan T (1997) Effect of neurotoxic pesticides on the feeding rate of marine mussels (Mytilus edulis). Pestic Sci 49(2):196–209

    Article  CAS  Google Scholar 

  • Driscoll SK, McElroy AE (1996) Bioaccumulation and metabolism of benzo [a] pyrene in three species of polychaete worms. Environ Toxicol Chem 15(8):1401–1410

    Article  CAS  Google Scholar 

  • Drum C (1980) Soil chemistry of pesticides. PPG Industries, Pittsburgh, PA

    Google Scholar 

  • Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79(6):1897–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeler P, Römbke J, Meller M, Knacker T, Franke C, Studinger G, Nagel R (1997) Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere 35(4):835–852

    Article  CAS  Google Scholar 

  • Ellgehausen H, Guth JA, Esser HO (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotoxicol Environ Saf 4(2):134–157

    Article  CAS  PubMed  Google Scholar 

  • Embrandiri A, Kiyasudeen SK, Rupani PF, Ibrahim MH (2016) Environmental xenobiotics and its effects on natural ecosystem. In: Plant responses to xenobiotics. Springer, Singapore, pp 1–18

    Google Scholar 

  • Ernst W (1979) Factors affecting the evaluation of chemicals in laboratory experiments using marine organisms. Ecotox Environ Saf 3:90–98

    Article  CAS  Google Scholar 

  • Escartín E, Porte C (1996) Bioaccumulation, metabolism, and biochemical effects of the organophosphorus pesticide fenitrothion in Procambarus clarkii. Environ Toxicol Chem 15(6):915–920

    Article  Google Scholar 

  • Essumang DK (2013) Environmental xenobiotics: PAHs in soil (heavy metals), indoor air and water environment, case studies of Ghana and Denmark

    Google Scholar 

  • Essumang DK, Ankrah DA (2010) Distribution, levels, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in some water bodies along the coastal belt of Ghana. Sci World J TSW Environ 10(972):985

    Google Scholar 

  • Essumang DK, Adokoh C, Afriyie J, Mensah E (2009) Source assessment and analysis of polycyclic aromatic hydrocarbon (PAH’s) in the Oblogo waste disposal sites and some water bodies in and around the Accra Metropolis of Ghana

    Google Scholar 

  • Eswaramoorthy S, Bonanno JB, Burley SK, Swaminathan S (2006) Mechanism of action of a flavin-containing monooxygenase. Proc Natl Acad Sci U S A 103(26):9832–9837. https://doi.org/10.1073/pnas.0602398103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahl GM, Kreft L, Altenburger R, Faust M, Boedeker W, Grimme LH (1995) pH-dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides. Aquat Toxicol 31(2):175–187

    Article  CAS  Google Scholar 

  • FAO (1990). http://www.fao.org/3/w2598e/w2598e07.htm

  • Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409(19):3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  PubMed  Google Scholar 

  • Ferrando MD, Sancho E, Andreu-Moliner E (1996) Accumulation of tetradifon in an algae (Nannochloris oculata) and the cladoceran, Daphnia magna. Bull Environ Contam Toxicol 57(1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Fetzner S (2002) Biodegradation of xenobiotics. Biotechnology 10:215–246

    Google Scholar 

  • Feurtet-Mazel A, Grollier T, Grouselle M, Ribeyre F, Boudou A (1996) Experimental study of bioaccumulation and effects of the herbicide isoproturon on freshwater rooted macrophytes (Elodea densa and Ludwigia natans). Chemosphere 32(8):1499–1512

    Article  CAS  Google Scholar 

  • Fick J, Lindberg RH, Tysklind M, Larsson DJ (2010) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58(3):516–523

    Article  CAS  PubMed  Google Scholar 

  • Fisher SW, Hwang H, Atanasoff M, Landrum PF (1999) Lethal body residues for pentachlorophenol in zebra mussels (Dreissena polymorpha) under varying conditions of temperature and pH. Ecotoxicol Environ Saf 43(3):274–283

    Article  CAS  PubMed  Google Scholar 

  • Gani KM, Ali M, Dubey M, Kazmi AA, Kumari S, Bux F (2021) Transport of emerging contaminants from agricultural soil to groundwater. In: Sustainable agriculture reviews, vol 50. Springer, Cham, pp 261–281

    Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6114–6120

    Article  CAS  PubMed  Google Scholar 

  • Garrison AW, Pope JD, Allen FR (1976) GC-MS analysis of organic compounds in domestic wastewater. In: Keith LH (ed) Identification and analysis of organic pollutants in water. Ann Arbor Science, Michigan, pp 517–556

    Google Scholar 

  • Geyer H, Sheehan P, Kotzias D, Freitag D, Korte F (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11(11):1121–1134

    Article  CAS  Google Scholar 

  • Gllderhus PA, Johnson BGH (1980) Effects of sea lamprey (Petromyzon marinus) control in the Great Lakes on aquatic plants, invertebrates, and amphibians. Can J Fish Aquat Sci 37(11):1895–1905

    Article  Google Scholar 

  • Glooschenko V, Holdrinet M, Lott JN, Frank R (1979) Bioconcentration of chlordane by the green alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 21(1):515–520

    Article  CAS  PubMed  Google Scholar 

  • Gobas FA, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25(5):924–929

    Article  CAS  Google Scholar 

  • Gomez CF, Constantine L, Huggett DB (2010) The influence of gill and liver metabolism on the predicted bioconcentration of three pharmaceuticals in fish. Chemosphere 81(10):1189–1195

    Article  CAS  PubMed  Google Scholar 

  • Govers H, Ruepert C, Aiking H (1984) Quantitative structure-activity relationships for polycyclic aromatic hydrocarbons: correlation between molecular connectivity, physico-chemical properties, bioconcentration and toxicity in Daphnia pulex. Chemosphere 13(2):227–236

    Article  CAS  Google Scholar 

  • Grech A, Quignot N, Brochot C, Dorne J, Bois FY, Beaudouin R (2016, May) Development and application of generic toxicokinetic models in fish to environmental risk assessment of chemicals. In 26. SETAC Europe annual meeting. SETAC

    Google Scholar 

  • Gregory WW Jr, Reed JK, Priester LE Jr (1969) Accumulation of parathion and DDT by some algae and protozoa. J Protozool 16(1):69–71

    Article  CAS  PubMed  Google Scholar 

  • Gross B, Montgomery-Brown J, Naumann A, Reinhard M (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environ Toxicol Chem 23(9):2074–2083

    Article  CAS  PubMed  Google Scholar 

  • Guanzon NG Jr, Fukuda M, Nakahara H (1996) Accumulation of agricultural pesticides by three freshwater microalgae. Fisheries Sci 62(5):690–697

    Article  CAS  Google Scholar 

  • Gunnarsson L, Kristiansson E, Rutgersson C, Sturve J, Fick J, Förlin L, Larsson DJ (2009) Pharmaceutical industry effluent diluted 1: 500 affects global gene expression, cytochrome P450 1A activity, and plasma phosphate in fish. Environ Toxicol Chem 28(12):2639–2647

    Article  CAS  PubMed  Google Scholar 

  • Halling-Sørensen B, Nyholm N, Kusk KO, Jacobsson E (2000) Influence of nitrogen status on the bioconcentration of hydrophobic organic compounds to Selenastrum capricornutum. Ecotoxicol Environ Saf 45(1):33–42

    Article  PubMed  Google Scholar 

  • Hamer MJ, Goggin UM, Muller K, Maund SJ (1999) Bioavailability of lambda-cyhalothrin to Chironomus riparius in sediment-water and water-only systems. Aquat Ecosyst Health Manage 2(4):403–412

    Article  CAS  Google Scholar 

  • Hansen PD (1979) Experiments on the accumulation of lindane (γ-BHC) by the primary producers Chlorella spec. and Chlorella pyrenoidosa. Arch Environ Contam Toxicol 8(6):721–731

    Article  CAS  PubMed  Google Scholar 

  • Haque R, Kearney PC, Freed VH (1977) Dynamics of pesticides in aquatic environments. In: Pesticides in aquatic environments. Springer, Boston, MA, pp 39–52

    Chapter  Google Scholar 

  • Harkey GA, Klaine SJ (1992) Bioconcentration of trans-chlordane by the midge, Chironomus decorus. Chemosphere 24(12):1911–1919

    Article  CAS  Google Scholar 

  • Hartley DM, Johnston JB (1983) Use of the freshwater clam Corbicula manilensis as a monitor for organochlorine pesticides. Bull Environ Contam Toxicol 31(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Hassaan MA, El Nemr A (2020) Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res 46(3):207–220

    Article  Google Scholar 

  • Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Saf 11(2):184–197

    Article  CAS  PubMed  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  PubMed  Google Scholar 

  • Heisig-Gunkel G, Gunkel G (1982) Distribution of a herbicide (atrazine, s-triazine) in Daphnia pulicaria: a new approach to determination. Arch Hydrobiol 59(4):359–376

    CAS  Google Scholar 

  • Helfrich LA, Weigmann DL, Stinson ER (2009) Pesticides and aquatic animals: a guide to reducing impacts on aquatic systems. Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Publication, Blacksburg, VA, p 24

    Google Scholar 

  • Hendriks AJ, van der Linde A, Cornelissen G, Sijm DT (2001) The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight. Environ Toxicol Chem 20(7):1399–1420

    Article  CAS  PubMed  Google Scholar 

  • Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145

    Article  PubMed  Google Scholar 

  • Hinman ML, Klaine SJ (1992) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla verticillata Royle. Environ Sci Technol 26(3):609–613

    Article  CAS  Google Scholar 

  • Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Holland W, Morrison T, Chang Y, Wiernsperger N, Stith BJ (2004) Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase. Biochem Pharmacol 67(11):2081–2091

    Article  CAS  PubMed  Google Scholar 

  • Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32(1):32–48

    Article  CAS  PubMed  Google Scholar 

  • Hou R, Liu C, Gao X, Xu Y, Zha J, Wang Z (2017) Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China. Environ Pollut 229:548–556

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MS (2007) Persistent organic pollutants in Malaysia. Dev Environ Sci 7:629–655. https://doi.org/10.1016/S1474-8177(07)07014-3

    Article  CAS  Google Scholar 

  • Islam MA, Amin SMN, Brown CL, Juraimi AS, Uddin MK, Arshad A (2021) Determination of median lethal concentration (LC50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and their impact on its behavioral patterns and histopathological responses. Toxics 9(12):340. https://doi.org/10.3390/toxics9120340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environ Toxicol 5(1):1

    Article  CAS  Google Scholar 

  • Jing TX, Tan Y, Ding BY, Dou W, Wei DD, Wang JJ (2018) NADPH-Cytochrome P450 Reductase mediates the resistance of Aphis (Toxoptera) citricidus (Kirkaldy) to Abamectin. Front Physiol 9:986

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson BT, Saunders CR, Sanders HO, Campbell RS (1971) Biological magnification and degradation of DDT and aldrin by freshwater invertebrates. J Fisheries Board Canada 28(5):705–709

    Article  CAS  Google Scholar 

  • Johnson CH, Patterson AD, Idle JR, Gonzalez FJ (2012) Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol 52:37–56. https://doi.org/10.1146/annurev-pharmtox-010611-134748

    Article  CAS  PubMed  Google Scholar 

  • Jonsson CM, Paraiba LC, Mendoza MT, Sabater C, Carrasco JM (2001) Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 43(3):321–325

    Article  CAS  PubMed  Google Scholar 

  • Julin AM, Sanders HO (1977) Toxicity and accumulation of the insecticide imidan in freshwater invertebrates and fishes. Trans Am Fish Soc 106(4):386–392

    Article  Google Scholar 

  • Kanazawa J (1978) Bioconcentration ratio of diazinon by freshwater fish and snail. Bull Environ Contam Toxicol 20(1):613–617

    Article  CAS  PubMed  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwada S, Mochida K, OzoE Y, Nakamura T (1995) Contribution of Zooplankton to disappearance of organophosphorus insecticides in environmental water. J Pestic Sci 20:503–512

    Article  CAS  Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre D (ed) Reviews of environmental contamination and toxicology, vol 204. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1440-8_1

    Chapter  Google Scholar 

  • Kawatski JA, Schmulbach JC (1972) Uptake and elimination of 14C-aldrin and 14C-dieldrin by the ostracod Chlamydotheca arcuata (Sars). Int J Environ Anal Chem 1(4):283–291

    Article  CAS  PubMed  Google Scholar 

  • Keil JE, Priester LE (1969) DDT uptake and metabolism by a marine diatom. Bull Environ Contam Toxicol 4(3):169–173

    Article  CAS  PubMed  Google Scholar 

  • Kent RA, Currie D (1995) Predicting algal sensitivity to a pesticide stress. Environ Toxicol Chem 14(6):983–991

    Article  CAS  Google Scholar 

  • Khan HM, Neudorf S, Khan MAQ (1975) Absorption and elimination of photodieldrin by Daphnia and goldfish. Bull Environ Contam Toxicol 13(5):582–587

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi R, Yasutaniya T, Takimoto Y, Yamada H, Miyamoto J (1984) Accumulation and metabolism of fenitrothion in three species of algae [concerning ecotoxicology]. J Pestic Sci 9:331

    Article  CAS  Google Scholar 

  • Klosterhaus SL, DiPinto LM, Chandler GT (2003) A comparative assessment of azinphosmethyl bioaccumulation and toxicity in two estuarine meiobenthic harpacticoid copepods. Environ Toxicol Chem 22(12):2960–2968

    Article  CAS  PubMed  Google Scholar 

  • Knezovich JP, Harrison FL (1988) The bioavailability of sediment-sorbed chlorobenzenes to larvae of the midge, Chironomus decorus. Ecotoxicol Environ Saf 15(2):226–241

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nakamura Y, Imada N (1985) Metabolism of an organophosphorus insecticide, fenitrothion, in tiger shrimp Penaeus japonicus. Nippon Suisan Gakkaishi 51(4):599–603

    Article  CAS  Google Scholar 

  • Kobayashi K, Rompas RM, Oshima Y, Imada N (1990) A comparative study on the toxicity, absorption and depuration of fenitrothion and its oxon in Japanese tiger shrimp. Nippon Suisan Gakkaishi 56(6):923–928

    Article  CAS  Google Scholar 

  • Koelmans AA, Jiménez CS (1994) Temperature dependency of chlorobenzene bioaccumulation in phytoplankton. Chemosphere 28(12):2041–2048

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999−2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Kukkonen J, Oikari A (1988) Sulphate conjugation is the main route of pentachlorophenol metabolism in Daphnia magna. Comp Biochem Physiol C Comp Pharmacol 91(2):465–468

    Article  Google Scholar 

  • Kumar S, Lal R, Bhatnagar P (1988) Uptake of dieldrin, dimethoate and permethrin by cyanobacteria, Anabaena sp. and Aulosira fertilissima. Environ Pollut 54(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharma AK, Rawat SS, Jain DK, Ghosh S (2013) Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian J Environ Sci 8(1):51–57

    Google Scholar 

  • La Farre M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27(11):991–1007

    Article  CAS  Google Scholar 

  • Lakhani L (2015) How to reduce impact of pesticides in aquatic environment. Soc Iss Environ Probl 3(9):29–38

    Google Scholar 

  • Lal S, Lal R, Saxena DM (1987) Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Environ Pollut 46(3):187–196

    Article  CAS  PubMed  Google Scholar 

  • Landrum PF, Dupuis WS (1990) Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hoyi and Mysis relicta. ASTM Spec Tech Publ 1096:278–289

    CAS  Google Scholar 

  • Landrum PF, Fisher SW (1999) Influence of lipids on the bioaccumulation and trophic transfer of organic contaminants in aquatic organisms. In: Lipids in freshwater ecosystems. Springer, New York, NY, pp 203–234

    Chapter  Google Scholar 

  • Landrum PF, Scavia D (1983) Influence of sediment on anthracene uptake, depuration, and biotransformation by the amphipod Hyalella azteca. Can J Fish Aquat Sci 40(3):298–305

    Article  CAS  Google Scholar 

  • Laxmi B, Madhavi K, Adnan A, Chamundeswari Devi B, Dhanapal K, Ramana TV (2019) Sub lethal effects of dichlorvos on physiological parameters in fingerlings of Cyprinus carpio. Int J Curr Microbiol App Sci 8(8):372–377

    Article  CAS  Google Scholar 

  • Laxmi B, Madhavi K, Dhanapal K, Adnan A, Sudhakar O, Jesintha N (2020) Biochemical responses of fingerling Cyprinus carpio (Linnaeus, 1758) exposed to sub-lethal concentrations of Dichlorvos. IntJ Curr Microbiol App Sci 9(10):3250–3257

    Article  CAS  Google Scholar 

  • Le Page Y, Vosges M, Servili A, Brion F, Kah O (2011) Neuroendocrine effects of endocrine disruptors in teleost fish. J Toxicol Environ Health Pt B 14(5-7):370–386

    Article  Google Scholar 

  • Lee YM, Kim KS, Jacobs DR Jr, Lee DH (2017) Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev 18(2):129–139

    Article  PubMed  Google Scholar 

  • Legierse KC, Sijm DT, van Leeuwen CJ, Seinen W, Hermens JL (1998) Bioconcentration kinetics of chlorobenzenes and the organophosphorus pesticide chlorthion in the pond snail Lymnaea stagnalis—a comparison with the guppy Poecilia reticulata. Aquat Toxicol 41(4):301–323

    Article  CAS  Google Scholar 

  • Lengai GM, Muthomi JW, Mbega ER (2020) Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci Afr 7:e00239

    Google Scholar 

  • Leppänen MT, Kukkonen JV (2006) Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140(1):150–163

    Article  PubMed  Google Scholar 

  • Leppänen MT, Landrum PF, Kukkonen JV, Greenberg MS, Burton GA Jr, Robinson SD, Gossiaux DC (2003) Investigating the role of desorption on the bioavailability of sediment-associated 3, 4, 3′, 4′-tetrachlorobiphenyl in benthic invertebrates. Environ Toxicol Chem Int J 22(12):2861–2871

    Article  Google Scholar 

  • Liess M, Foit K (2010) Intraspecific competition delays recovery of population structure. Aquat Toxicol 97(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Lionetto MG, Caricato R, Calisi A, Schettino T (2011) Acetylcholinesterase inhibition as a relevant biomarker in environmental biomonitoring: new insights and perspectives. In: Ecotoxicology around the globe, pp 87–115

    Google Scholar 

  • Livingston RJ, de La Cruz AA (1977) Review of current literature concerning the acute and chronic effects of pesticides on aquatic organisms. Crit Rev Environ Sci Technol 7(4):325–351

    Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A 120:43–49

    Article  CAS  Google Scholar 

  • Lockhart WL, Billeck BN, de March BG, Muir DC (1983) Uptake and toxicity of organic compounds: studies with an aquatic macrophyte (Lemna minor). In: Aquatic Toxicology and Hazard Assessment: Sixth Symposium. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Lockhart WL, Metner DA, Billeck BN, Rawn GP, Muir DCG (1984) Bioaccumulation of some forestry pesticides in fish and aquatic plants. In: Garner WY, Harvey J Jr (eds) Chemical and biological controls in forestry. ACS symposium series 238. American Chemical Society, Washington, DC, pp 297–315

    Chapter  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML, Tigue EA, Herche LR (2000) Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environ Toxicol Chem 19(2):368–379

    Article  CAS  Google Scholar 

  • Lotufo GR, Farrar JD, Duke BM, Bridges TS (2001a) DDT toxicity and critical body residue in the amphipod Leptocheirus plumulosus in exposures to spiked sediment. Arch Environ Contam Toxicol 41(2):142–150

    Article  CAS  PubMed  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML (2001b) Toxicity and bioaccumulation of DDT in freshwater amphipods in exposures to spiked sediments. Environ Toxicol Chem 20(4):810–825

    Article  CAS  PubMed  Google Scholar 

  • Lydy MJ, Hayton WL, Staubus AE, Fisher SW (1994) Bioconcentration of 5, 5′, 6-trichlorobiphenyl and pentachlorophenol in the midge, Chironomus riparius, as measured by a pharmacokinetic model. Arch Environ Contam Toxicol 26(2):251–256

    Article  CAS  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16(5):274–278

    Article  CAS  PubMed  Google Scholar 

  • Mäenpää K (2007) The toxicity of xenobiotics in an aquatic environment: connecting body residues with adverse effects. Joensuun yliopisto

    Google Scholar 

  • Mäenpää KA, Sormunen AJ, Kukkonen JV (2003) Bioaccumulation and toxicity of sediment associated herbicides (ioxynil, pendimethalin, and bentazone) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Ecotoxicol Environ Saf 56(3):398–410

    Article  PubMed  Google Scholar 

  • Mailhot H (1987) Prediction of algal bioaccumulation and uptake rate of nine organic compounds by ten physicochemical properties. Environ Sci Technol 21(10):1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä P, Oikari AO (1990) Uptake and body distribution of chlorinated phenolics in the freshwater mussel, Anodonta anatina L. Ecotoxicol Environ Saf 20(3):354–362

    Article  PubMed  Google Scholar 

  • Manthey M, Faust M, Smolka S, Grimme LH (1993) Herbicide bioconcentration in algae: Studies on lipophilicity-sorption-activity relationships (LSAR) with Chlorella fusca. Sci Total Environ 134:453–459

    Article  Google Scholar 

  • Marquis LY, Comes RD, Yang CP (1981) Absorption and translocation of fluridone and glyphosate in submersed vascular plants. Weed Sci 29(2):229–236

    Article  CAS  Google Scholar 

  • Mason JW, Rowe DR (1976) The accumulation and loss of dieldrin and endrin in the eastern oyster. Arch Environ Contam Toxicol 4(1):349–360

    Article  CAS  PubMed  Google Scholar 

  • Mathur R, Saxena DM (1986) Effect of hexachlorocyclohexane (HCH) isomers on growth of, and their accumulation in, the blue-green alga, Anabaena Sp.(ARM 310). J Environ Biol 7:239

    CAS  Google Scholar 

  • Matsumura F (1977) Absorption, accumulation, and elimination of pesticides by aquatic organisms. In: Pesticides in aquatic environments. Springer, Boston, MA, pp 77–105

    Chapter  Google Scholar 

  • Maund SJ, Hamer MJ, Lane MC, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Maurya PK, Malik DS, Sharma A (2019) Impacts of pesticide application on aquatic environments and fish diversity. In: Kumar V, Kumar R, Singh J, Kumar P (eds) Contaminants in agriculture and environment: health risks and remediation, vol 1. Agro Environ Media, Haridwar, pp 111–128. https://doi.org/10.26832/AESA-2019-CAE-0162-09

    Chapter  Google Scholar 

  • McLeese DW, Zitko V, Sergeant DB (1979) Uptake and excretion of fenitrothion by clams and mussels. Bull Environ Contam Toxicol 22(1):800–806

    Article  CAS  PubMed  Google Scholar 

  • Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI (2019) The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev 99(2):1153–1222. https://doi.org/10.1152/physrev.00058.2017

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Kumar S, Zahid M, Garg M (2017) Biopesticides. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 273–292

    Chapter  Google Scholar 

  • Miyamoto J, Mikami N, Takimoto Y (1990) The fate of pesticides in aquatic ecosystems. Prog Pest Biochem Toxicol 7:123–147

    CAS  Google Scholar 

  • Mohapatra S, Kumar R, Sundaray JK, Patnaik ST, Mishra CSK, Rather MA (2021) Structural damage in liver, gonads, and reduction in spawning performance and alteration in the haematological parameter of Anabas testudineus by glyphosate-a herbicide. Aquacult Res 52(3):1150–1159

    Article  CAS  Google Scholar 

  • Montañés JC, Van Hattum B, Deneer J (1995) Bioconcentration of chlorpyrifos by the freshwater isopod Asellus aquaticus (L.) in outdoor experimental ditches. Environ Pollut 88(2):137–146

    Article  Google Scholar 

  • Moore R, Toro E, Stanton M, Khan MAQ (1977) Absorption and elimination of 14C-alpha- and gamma-chlordane by a freshwater alga, daphnid, and goldfish. Arch Environ Contam Toxicol 6(1):411–420

    Article  CAS  PubMed  Google Scholar 

  • Morrison HA, Gobas FA, Lazar R, Haffner GD (1996) Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ Sci Technol 30(11):3377–3384

    Article  CAS  Google Scholar 

  • Muhammad G, Rashid I, Firyal S (2017) Practical aspects of treatment of organophosphate and carbamate insecticide poisoning in animals. Matrix Sci Pharma 1(1):10–11

    Article  Google Scholar 

  • Muir DCG, Grift NP, Townsend BE, Metner DA, Lockhart WL (1982) Comparison of the uptake and bioconcentration of fluridone and terbutryn by rainbow trout and Chironomus tentans in sediment and water systems. Arch Environ Contam Toxicol 11(5):595–602

    Article  CAS  Google Scholar 

  • Naqvi SM, Newton DJ (1990) Bioaccumulation of endosulfan (Thiodan R insecticide) in the tissues of Louisiana crayfish, Procambarus clarkii. J Environ Sci Health Pt B 25(4):511–526

    Article  CAS  Google Scholar 

  • Narayana Rao VS, Lal R (1987) Uptake and metabolism of insecticides by blue-green algae Anabaena and Aulosira fertilissima. Microbios Lett 36(143-144):143–147

    Google Scholar 

  • Nawaz S, Kirk K (1996) Temperature effects on bioconcentration of DDE by Daphnia. Freshw Biol 35(1):173–178

    Article  CAS  Google Scholar 

  • Nebeker AV, Griffis WL, Wise CM, Hopkins E, Barbitta JA (1989) Survival, reproduction and bioconcentration in invertebrates and fish exposed to hexachlorobenzene. Environ Toxicol Chem 8(7):601–611

    Article  CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ Sci Technol 8(13):1113–1115

    Article  CAS  Google Scholar 

  • Nemcsok J, Benedeczky I (1995) Pesticide metabolism and the adverse effects of metabolites on fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 59. Elsevier Science, Amsterdam, pp 313–348

    Google Scholar 

  • Neudorf S, Khan MAQ (1975) Pick-up and metabolism of DDT, dieldrin and photodieldrin by a fresh water alga (Ankistrodesmus amalloides) and a Microcrustacean(Daphnia pulex). Bull Environ Contam Toxicol 13(4):443–450

    Article  CAS  PubMed  Google Scholar 

  • Nikkilä A, Paulsson M, Almgren K, Blanck H, Kukkonen JV (2001) Atrazine uptake, elimination, and bioconcentration by periphyton communities and Daphnia magna: effects of dissolved organic carbon. Environ Toxicol Chem 20(5):1003–1011

    Article  PubMed  Google Scholar 

  • Nikkilä A, Halme A, Kukkonen JV (2003) Toxicokinetics, toxicity and lethal body residues of two chlorophenols in the oligochaete worm, Lumbriculus variegatus, in different sediments. Chemosphere 51(1):35–46

    Article  PubMed  Google Scholar 

  • Nuutinen S, Landrum PF, Schuler LJ, Kukkonen JV, Lydy MJ (2003) Toxicokinetics of organic contaminants in Hyalella azteca. Arch Environ Contam Toxicol 44(4):0467–0475

    Article  CAS  Google Scholar 

  • Oliver BG (1987) Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ Sci Technol 21(8):785–790

    Article  CAS  PubMed  Google Scholar 

  • Paris DF, Lewis DL (1976) Accumulation of methoxychlor by microorganisms isolated from aqueous systems. Bull Environ Contam Toxicol 15(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Petrocelli SR, Hanks AR, Anderson J (1973) Uptake and accumulation of an organochlorine insecticide (dieldrin) by an estuarine mollusc, Rangia cuneata. Bull Environ Contam Toxicol 10:315

    Article  CAS  PubMed  Google Scholar 

  • Pillai MK, Mittal PK, Agarwal HC (1980) Bioaccumulation, metabolism & elimination of DDT by the fresh water clam Indonaia caerulea (Lea). Indian J Exp Biol 18(12):1439–1442

    CAS  PubMed  Google Scholar 

  • Rajendran N, Venugopalan VK (1991) Bioconcentration of endosulfan in different body tissues of estuarine organisms under sublethal exposure. Bull Environ Contam Toxicol 46(1):151

    Article  CAS  PubMed  Google Scholar 

  • Rápó E, Tonk S (2021) Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 26(17):5419

    Article  PubMed  PubMed Central  Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42(1):263–287

    Article  CAS  PubMed  Google Scholar 

  • Reinert RE (1972) Accumulation of dieldrin in an alga (Scenedesmus obliquus), Daphnia magna, and the guppy (Poecilia reticulata). J Fisheries Board Canada 29(10):1413–1418

    Article  CAS  Google Scholar 

  • Renberg L, Tarkpea M, Lindén E (1985) The use of the bivalve Mytilus edulis as a test organism for bioconcentration studies: I. Designing a continuous-flow system and its application to some organochlorine compounds. Ecotoxicol Environ Saf 9(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Nagel R (2007) Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo [a] pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere 66(4):603–610

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall E (2013) Streams stressed by pharmaceutical pollution. https://environmentalchange.nd.edu/news-events/

  • Roy S, Hänninen O (1994) Pentachlorophenol: uptake/elimination kinetics and metabolism in an aquatic plant, Eichhornia crassipes. Environ Toxicol Chem 13(5):763–773

    Article  CAS  Google Scholar 

  • Sabaliünas D, Lazutka J, Sabaliüniene I, Södergren A (1998) Use of semipermeable membrane devices for studying effects of organic pollutants: comparison of pesticide uptake by semipermeable membrane devices and mussels. Environ Toxicol Chem 17(9):1815–1824

    Article  Google Scholar 

  • Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938(1-2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Sathe MC, Shrotri RV, Raghu K, Murthy NBK (2005) Observations on accumulation and depuration of fenthion in various tissues of marine edible clam, Marcia hiantina (Lamarck). J Ecophysiol Occup Health 5(1):33–36

    CAS  Google Scholar 

  • Saxena DM, Lal R, Reddy BVP (1982) DDT uptake and metabolism in Blepharisma intermedium. Acta Protozool 21(2):173

    CAS  Google Scholar 

  • Segner H (2015) In vitro methodologies in ecotoxicological hazard assessment: the case of bioaccumulation testing for fish. Altern Lab Anim 43(2):P14–P16

    Article  PubMed  Google Scholar 

  • Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2-3):272–285

    Article  PubMed  Google Scholar 

  • Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by blue-green algae and related effects on photosynthetic pigments. Bull Environ Contam Toxicol 17(5):534–541

    Article  CAS  PubMed  Google Scholar 

  • Schenkman JB (1999) The fate of xenobiotics in the body. In: Arinç E, Schenkman JB, Hodgson E (eds) Molecular and applied aspects of oxidative drug metabolizing enzymes. NATO ASI series, vol 303. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4855-3_1

    Chapter  Google Scholar 

  • Schimmel SC, Patrick JM, Forester J (1977) Uptake and toxicity of toxaphene in several estuarine organisms. Arch Environ Contam Toxicol 5(1):353–367

    Article  CAS  PubMed  Google Scholar 

  • Schimmel SC, Garnas RL, Patrick JM Jr, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31(1):104–113

    Article  CAS  PubMed  Google Scholar 

  • Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37(10):1882–1892

    Article  CAS  Google Scholar 

  • Schuler LJ, Wheeler M, Bailer AJ, Lydy MJ (2003) Toxicokinetics of sediment-sorbed benzo [a] pyrene and hexachlorobiphenyl using the freshwater invertebrates Hyalella azteca, Chironomus tentans, and Lumbriculus variegatus. Environ Toxicol Chem 22(2):439–449

    Article  CAS  PubMed  Google Scholar 

  • Schuytema GS, Krawczyk DF, Grlffis WL, Nebeker AV, Robideaux ML, Brownawell BJ, Westall JC (1988) Comparative uptake of hexachlorobenzene by fathead minnows, amphipods and oligochaete worms from water and sediment. Environ Toxicol Chem 7(12):1035–1045

    Article  CAS  Google Scholar 

  • Serrano R, Hernandez F, Pena JB, Dosda V, Canales J (1995) Toxicity and bioconcentration of selected organophosphorus pesticides in Mytilus galloprovincialis and Venus gallina. Arch Environ Contam Toxicol 29(3):284–290

    Article  CAS  Google Scholar 

  • Serrano R, Hernández F, López FJ, Pena JB (1997a) Bioconcentration and depuration of chlorpyrifos in the marine mollusc Mytilus edulis. Arch Environ Contam Toxicol 33(1):47–52

    Article  CAS  Google Scholar 

  • Serrano R, Lopez FJ, Hernandez F, Pena JB (1997b) Bioconcentration of chlorpyrifos, chlorfenvinphos, and methidathion in Mytilus galloprovincialis. Bull Environ Contam Toxicol 59(6):968–975

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam G, Sampath S, Selvaraj KK, Larsson DG, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Thukral AK et al (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences 1(11):1–16

    Article  Google Scholar 

  • Shaw GR, Connell DW (1987) Comparative kinetics for bioaccumulation of polychlorinated biphenyls by the polychaete (Capitella capitata) and fish (Mugil cephalus). Ecotoxicol Environ Saf 13(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Shofer SL, Tjeerdema RS (1993) Comparative disposition and biotransformation of pentachlorophenol in the oyster (Crassostrea gigas) and abalone (Haliotis fulgens). Pestic Biochem Physiol 46(2):85–95

    Article  CAS  Google Scholar 

  • Sikandar A, Shehzadi K, Arshad Q, Munir K (2013) Phytoremediation: an analytical technique for the assessment of biodegradation of organic xenobiotic pollutants: a review. Int J Sci Res 4(2):2250–2253

    Google Scholar 

  • Singh T, Singh DK (2017) Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. Int J Phytoremediation 19(9):834–843

    Article  CAS  PubMed  Google Scholar 

  • Singh Z, Kaur J, Kaur R, Hundal SS (2016) Toxic effects of organochlorine pesticides: a review. Am J Biol Sci 4(3):11

    CAS  Google Scholar 

  • Sjerps RM, Kooij PJ, van Loon A, Van Wezel AP (2019) Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–518

    Article  CAS  PubMed  Google Scholar 

  • Södergren A, Svensson B (1973) Uptake and accumulation of DDT and PCB by Ephemera danica (Ephemeroptera) in continuous-flow systems. Bull Environ Contam Toxicol 9:345–350

    Article  PubMed  Google Scholar 

  • Spacie A, Hamelink JL (1982) Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1(4):309–320

    Article  CAS  Google Scholar 

  • Spehar RL, Tanner DK, Nordling BR (1983) Toxicity of the synthetic pyrethroids, permethrin and AC 222, 705 and their accumulation in early life stages of fathead minnows and snails. Aquat Toxicol 3(2):171–182

    Article  CAS  Google Scholar 

  • Suja S, Williams SE (2018) Determination of lethal concentration (LC 50) of Channa striata. Int J Sci Res 7(8):603–605

    Google Scholar 

  • Sumon KA, Rashid H, Peeters ET, Bosma RH, Van den Brink PJ (2018) Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere 206:92–100

    Article  CAS  PubMed  Google Scholar 

  • Szewczuk LM, Forti L, Stivala LA, Penning TM (2004) Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem 279(21):22727–22737

    Article  CAS  PubMed  Google Scholar 

  • Takimoto Y, Ohshima M, Miyamoto J (1987a) Comparative metabolism of fenitrothion in aquatic organisms: II. Metabolism in the freshwater snails, Cipangopaludina japonica and Physa acuta. Ecotoxicol Environ Saf 13(1):118–125

    Article  CAS  PubMed  Google Scholar 

  • Takimoto Y, Ohshima M, Miyamoto J (1987b) Comparative metabolism of fenitrothion in aquatic organisms: III. Metabolism in the crustaceans, Daphnia pulex and Palaemon paucidens. Ecotoxicol Environ Saf 13(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Tang JX, Siegfried BD (1996) Bioconcentration and uptake of a pyrethroid and organophosphate insecticide by selected aquatic insects. Bull Environ Contam Toxicol 57(6):993–998

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17(6):1085–1090

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Thomann RV, Komlos J (1999) Model of biota-sediment accumulation factor for polycyclic aromatic hydrocarbons. Environ Toxicol Chem 18(5):1060–1068

    Article  CAS  Google Scholar 

  • Thompson DG, Holmes SB, Wainio-Keizer K, MacDonald L, Solomon KR (1993) Impact of hexazinone and metsulfuron methyl on the zooplankton community of a boreal forest lake. Environ Toxicol Chem 12(9):1709–1717

    Article  CAS  Google Scholar 

  • Thybaud E, Caquet T (1991) Uptake and elimination of lindane by Lymnaea palustris (Mollusca: Gastropoda): a pharmacokinetic approach. Ecotoxicol Environ Saf 21(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Thybaud E, Le Bras S (1988) Absorption and elimination of lindane by Asellus aquaticus (Crustacea, Isopoda). Bull Environ Contam Toxicol 40(5):731–735

    Article  CAS  PubMed  Google Scholar 

  • Tjeerdema RS, Crosby DG (1992) Disposition and biotransformation of pentachlorophenol in the red abalone (Haliotis rufescens). Xenobiotica 22(6):681–690

    Article  CAS  PubMed  Google Scholar 

  • Tooker JF, Pearsons KA (2021) Newer characters, same story: neonicotinoid insecticides disrupt food webs through direct and indirect effects. Curr Opin Insect Sci 46:50–56

    Article  PubMed  Google Scholar 

  • Tornero V, Hanke G (2016) Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas. Mar Pollut Bull 112(1–2):17–38

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2008) Estimation Programs Interface SuiteTM for Microsoft® Windows, v3.20. United States Environmental Protection Agency, Washington, DC, USA

    Google Scholar 

  • Van den Brink PJ (2013) Assessing aquatic population and community-level risks of pesticides. Environ Toxicol Chem 32(5):972–973

    Article  PubMed  Google Scholar 

  • Van den Brink PJ, Hartgers EM, Fettweis U, Crum SJ, Van Donk E, Brock TC (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotoxicol Environ Saf 38(1):13–24

    Article  PubMed  Google Scholar 

  • van der Ven K, Van Dongen W, Maes BU, Esmans EL, Blust R, De Coen WM (2004) Determination of diazepam in aquatic samples by capillary liquid chromatography–electrospray tandem mass spectrometry. Chemosphere 57(8):967–973

    Article  PubMed  Google Scholar 

  • van Heel W, Hachimi-Idrissi S (2011) Accidental organophosphate insecticide intoxication in children: a reminder. Int J Emerg Med 4(1):1–4

    Google Scholar 

  • Vance BD, Drummond W (1969) Biological concentration of pesticides by algae. J AWWA 61:360–362

    Article  Google Scholar 

  • Varo I, Serrano R, Pitarch E, Amat F, Lopez FJ, Navarro JC (2000) Toxicity and bioconcentration of chlorpyrifos in aquatic organisms: Artemia parthenogenetica (Crustacea), Gambusia affinis, and Aphanius iberus (Pisces). Bull Environ Contam Toxicol 65(5):623–630

    Article  CAS  PubMed  Google Scholar 

  • Veith GD, DeFoe DL, Bergstedt BV (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J Fisheries Board Canada 36(9):1040–1048

    Article  CAS  Google Scholar 

  • Vonk JA, Kraak MHS (2020) Herbicide exposure and toxicity to aquatic primary producers. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 250, pp 119–171. https://doi.org/10.1007/398_2020_48

    Chapter  Google Scholar 

  • Wang WH, Lay JP (1989) Fate and effects of salicylic acid compounds in freshwater systems. Ecotoxicol Environ Saf 17(3):308–316

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Simpson KL (1996) Accumulation and depuration of DDTs in the food chain from Artemia to brook trout (Salvelinus fontinalis). Bull Environ Contam Toxicol 56(6):888–895

    Article  CAS  PubMed  Google Scholar 

  • Warner NA, Wong CS (2006) The freshwater invertebrate Mysis relicta can eliminate chiral organochlorine compounds enantioselectively. Environ Sci Technol 40(13):4158–4164

    Article  CAS  PubMed  Google Scholar 

  • Warra AA, Prasad MNV (2020) African perspective of chemical usage in agriculture and horticulture—their impact on human health and environment. In: Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 401–436

    Chapter  Google Scholar 

  • Watanabe S, Watanabe S, Ito K (1985) Accumulation and excretion of herbicides in various tissues of mussel. Food Hyg Saf Sci 26(5):496–499

    Article  CAS  Google Scholar 

  • Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Wanke A et al (2004) Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 57(2):107–126

    Article  CAS  PubMed  Google Scholar 

  • Wijngaarden R, Van PA, Brock T, Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14(3):355–380

    Article  PubMed  Google Scholar 

  • Woodburn KB, Hansen SC, Roth GA, Strauss K (2003) The bioconcentration and metabolism of chlorpyrifos by the eastern oyster, Crassostrea virginica. Environ Toxicol Chem 22(2):276–284

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2020) The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World Health Organization

    Google Scholar 

  • Yadav IC, Devi NL (2017) Pesticides classification and its impact on human and environment. Environ Sci Eng 6:140–158

    Google Scholar 

  • Yadav DV, Agarwal HC, Pillai MKK (1978) Uptake, metabolism and excretion of DDT by the fresh water snail, Vivipara heliciformis. Bull Environ Contam Toxicol 15:300–306

    Article  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  CAS  PubMed  Google Scholar 

  • Yamato Y, Kiyonaga M, Watanabe T (1983) Comparative bioaccumulation and elimination of HCH isomers in short-necked clam (Venerupis japonica) and guppy (Poecilia reticulata). Bull Environ Contam Toxicol 31(3):352–359

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M (2017) Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 49(2):105–138. https://doi.org/10.1080/03602532.2017.1293682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40(20):6348–6353

    Article  CAS  PubMed  Google Scholar 

  • Yuniari SH, Hertika AMS, Leksono AS (2016) Lethal concentration 50 (LC50—96 hours) Nile Tilapia (Oreochromis niloticus) exposed Cypermethrin-based pesticide. JExp Life Sci 6(2):58–62

    Google Scholar 

  • Yu-yun T, Thumm W, Jobelius-Korte M, Attar A, Freitag D, Kettrup A (1993) Fate of two phenylbenzoylurea insecticides in an algae culture system (Scenedesmus subspicatus). Chemosphere 26(5):955–962

    Article  Google Scholar 

  • Zaffar H, Irshad U, Pervez A, Naqvi TA (2016) Mode of action, toxicity and biodegradation of organochlorinated pesticides: a mini overview. J Appl Environ Biol Sci 6(8):1–6

    Google Scholar 

  • Zaki MS, Hamaam AMM (2014) Xenobiotics as stressful factors in aquatic system (in fish). Life Sci J 11(4):188–197

    Google Scholar 

  • Zaroogian GE, Johnson M, Heltshe JF (1985) Estimation of bioconcentration in marine species using structure-activity models. Environ Toxicol Chem 4(1):3–12

    Article  CAS  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102:7139–7146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwari Vittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

S, A.D. et al. (2023). Pesticide and Xenobiotic Metabolism in Aquatic Organisms. In: Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I. (eds) Xenobiotics in Aquatic Animals. Springer, Singapore. https://doi.org/10.1007/978-981-99-1214-8_1

Download citation

Publish with us

Policies and ethics