Skip to main content

Introduction of Graphene: The “Mother” of All Carbon Allotropes

  • Chapter
  • First Online:
Graphene

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Graphene, a two-dimensional (2D), with an electron configuration of \({1\mathrm{s}}^{2}{2\mathrm{s}}^{2}{2\mathrm{p}}^{2}\) is a single molecule crystalline structure that forms a hexagonal honeycomb lattice structure. Since its discovery in 2004, graphene has been widely researched for applications in numerous industries namely electronics, optics, automobile etc. The 2D carbon material is known to be the chemical basis for all life on earth, thus, making grapheme potentially an eco-friendly, sustainable solution for various applications. Today, grapheme has been known to be the strongest material due to the presence of the strongest \({\mathrm{sp}}^{2}\) C–C bonding. Due to its fascinating properties such as excellent mechanical, thermal, electrical and chemical inertness, graphene is also a suitable candidate for applications associated with batteries and supercapacitors, where by the inclusion of graphene will result in more energy storage in the batteries and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  3. Biró, L.P., Nemes-Incze, P., Lambin, P.: Graphene: nanoscale processing and recent applications. Nanoscale 4(6), 1824–1839 (2012)

    Article  ADS  Google Scholar 

  4. Bonaccorso, F., et al.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 2010. https://www.nature.com/articles/nphoton.2010.186

  5. Zou, L., Wang, L., Wu, Y., Ma, C., Yu, S., Liu, X.: Trends analysis of graphene research and development. J. Data Inf. Sci. 3, 82–100 (2020). https://doi.org/10.2478/jdis-2018-0005

    Article  Google Scholar 

  6. Khan, K., Tareen, A.K., Aslam, M., Zhang, Y., Wang, R., Ouyang, Z., Gou, Z., Zhang, H.: Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. R. Soc. Chem. (2019). https://doi.org/10.1039/c9nr05919a

    Article  Google Scholar 

  7. Mohan, V.B., Lau, K.T., Hui, D., Bhattacharyya, D.: Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. Part B Eng. 142, 200–220 (2018). https://doi.org/10.1016/j.compositesb.2018.01.013

  8. Wang, Z., Ciacchi, L.C., Wei, G.: Recent advances in the synthesis of graphene-based nanomaterials for controlled drug delivery. Appl. Sci. 7, (2017). https://doi.org/10.3390/app7111175

  9. Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A., Hossain, S.S.: Synthesis of graphene. Int. Nano Lett. 6, 65–83 (2016). https://doi.org/10.1007/s40089-015-0176-1

    Article  Google Scholar 

  10. Molina, J., Cases, F., Moretto, L.M.: Graphene-based materials for the electrochemical determination of hazardous ions. Anal. Chim. Acta. 946, 9–39 (2016). https://doi.org/10.1016/j.aca.2016.10.019

    Article  Google Scholar 

  11. Wu, J.B., Lin, M.L., Cong, X., Liu, H.N., Tan, P.H.: Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018). https://doi.org/10.1039/c6cs00915h

  12. Roy, S., Jaiswal, A.: Graphene-based nanomaterials for theranostic applications (2017). https://doi.org/10.1142/s2424942417500116

  13. Wu, X., Mu, F., Zhao, H.: Synthesis and potential applications of nanoporous graphene: a review. Proc. Nat. Res. Soc. 2, (2018). https://doi.org/10.11605/j.pnrs.201802003

  14. Phiri, J., Gane, P., Maloney, T.C.: General overview of graphene: production, properties and application in polymer composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215, 9–28 (2017). https://doi.org/10.1016/j.mseb.2016.10.004

  15. Habib, M.R., Liang, T., Yu, X., Pi, X., Liu, Y., Xu, M.: A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen. Rep. Prog. Phys. 81, (2018). https://doi.org/10.1088/1361-6633/aa9bbf

  16. Madni, A., Noreen, S., Maqbool, I., Rehman, F., Batool, A., Kashif, P.M., Rehman, M., Tahir, N., Khan, M.I.: Graphene-based nanocomposites: synthesis and their theranostic applications. J. Drug Target. 26, 858–883 (2018). https://doi.org/10.1080/1061186X.2018.1437920

    Article  Google Scholar 

  17. Martínez, J.I., Moncada, J.L., Larenas, J.M.: The dual descriptor to measure local reactivity on Buckminster fullerenes: an analysis within the framework of conceptual DFT. J. Mol. Model. 16, 1825–1832 (2010). https://doi.org/10.1007/s00894-009-0638-3

    Article  Google Scholar 

  18. Wang, J., Ma, F., Sun, M.: Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7, 16801–16822 (2017). https://doi.org/10.1039/c7ra00260b

    Article  ADS  Google Scholar 

  19. Weiss, N.O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., Duan, X.: Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012). https://doi.org/10.1002/adma.201201482

    Article  Google Scholar 

  20. Zhang, L., Wang, Y., Niu, Z., Chen, J.: Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon N. Y. 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067

    Article  Google Scholar 

  21. Roselin, L.S., Juang, R.S., Hsieh, C.T., Sagadevan, S., Umar, A., Selvin, R. and Hegazy, H.H.: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Mater. (Basel) 12, (2019). https://doi.org/10.3390/ma12081229

  22. Krsihna, B.V., Ravi, S., Prakash, M.D.: Recent developments in graphene based field effect transistors. Mater. Today Proc. 45, 1524–1528 (2021). https://doi.org/10.1016/j.matpr.2020.07.678

    Article  Google Scholar 

  23. Siwal, S.S., Zhang, Q., Devi, N., Thakur, V.K.: Carbon-based polymer nanocomposite for high-performance energy storage applications. Polym. (Basel) 12, 1–31 (2020). https://doi.org/10.3390/polym12030505

    Article  Google Scholar 

  24. Natter, N., Kostoglou, N., Koczwara, C., Tampaxis, C., Steriotis, T., Gupta, R., Paris, O., Rebholz, C., Mitterer, C.: Plasma-derived graphene-based materials for water purification and energy storage. C 5, 16 (2019). https://doi.org/10.3390/c5020016

  25. Shin, K.Y., Hong, J.Y., Jang, J.: Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 23, 2113–2118 (2011). https://doi.org/10.1002/adma.201100345

    Article  Google Scholar 

  26. Tkachev, S., Monteiro, M., Santos, J., Placidi, E., Hassine, M.B., Marques, P., Ferreira, P., Alpuim, P., Capasso, A.: Environmentally friendly graphene inks for touch screen sensors. Adv. Funct. Mater. 31, 1–15 (2021). https://doi.org/10.1002/adfm.202103287

  27. Wang, J., Liang, M., Fang, Y., Qiu, T., Zhang, J., Zhi, L.: Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874–2878 (2012). https://doi.org/10.1002/adma.201200055

    Article  Google Scholar 

  28. Yin, Z., Zhu, J., He, Q., Cao, X., Tan, C., Chen, H., Yan, Q., Zhang, H.: Graphene-based materials for solar cell applications. Adv. Energy Mater. 4, 1–19 (2014). https://doi.org/10.1002/aenm.201300574

    Article  Google Scholar 

  29. Singh, E., Nalwa, H.S.: Stability of graphene-based heterojunction solar cells. RSC Adv. 5, 73575–73600 (2015). https://doi.org/10.1039/c5ra11771b

    Article  ADS  Google Scholar 

  30. Choudhuri, P., Bhauriyal, B.: Pathak, recent advances in graphene-like 2D materials for spintronics applications. Chem. Mater. 31, 8260–8285 (2019). https://doi.org/10.1021/acs.chemmater.9b02243

    Article  Google Scholar 

  31. Dragoman, M., Dragoman, D.: The carbon nanotube radio. Proc. Int. Semicond. Conf. CAS 1, 77–80 (2008). https://doi.org/10.1109/SMICND.2008.4703331

    Article  Google Scholar 

  32. Ansari, R., Mahmoudinezhad, E., Motevalli, B.: Different motion patterns of triple-walled carbon nanotube oscillators. J. Vib. Control (JVC) 20, 773–785 (2014). https://doi.org/10.1177/1077546312455679

    Article  Google Scholar 

  33. Strativnov, E.V.: Design of modern reactors for synthesis of thermally expanded graphite. Nanoscale Res. Lett. 10, (2015). https://doi.org/10.1186/s11671-015-0919-y

  34. Karle, N.N.: DFT Study of Adsorption of Trimetallic Endohedral Fullerenes on Graphene (2017)

    Google Scholar 

  35. Lu, Z., Ma, L., Tan, J., Wang, H., Ding, X.: Transparent multi-layer Graphene/Polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale 8, 16684–16693 (2016). https://doi.org/10.1039/c6nr02619b

    Article  Google Scholar 

  36. Akbar, S.: A brief review on graphene applications in rechargeable lithium ion battery electrode materials. Carbon Lett. 28, 1–8 (2018)

    Google Scholar 

  37. Elkholy, A.E., El-Taib Heakal, F., Allam, N.K.: A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochim. Acta 296, 59–68 (2019). https://doi.org/10.1016/j.electacta.2018.11.038

  38. Zhao, G., et al.: One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016

  39. Yu, F., et al.: A zinc bromine “supercapattery” system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Mater. Horiz. 7, 495–503 (2020). https://doi.org/10.1039/C9MH01353A

  40. Shao, H., Padmanathan, N., McNulty, D., O’Dwyer, C., Razeeb, K.M.: Cobalt phosphate-based supercapattery as alternative power source for implantable medical devices. ACS Appl. Energy Mater. 2, 569–578 (2019). https://doi.org/10.1021/acsaem.8b01612

  41. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909 (2010). https://doi.org/10.1016/j.electacta.2010.02.025

  42. Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B.: High-throughput solution processing of large - scale graphene. Nat. Nanotechnol. 4, 25 (2009). https://doi.org/10.1038/nnano.2008.329

    Article  ADS  Google Scholar 

  43. Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269 (1999). https://doi.org/10.1088/0957-4484/10/3/308

    Article  ADS  Google Scholar 

  44. Wu, Z.S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F., Cheng, H.M.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010). https://doi.org/10.1021/nn100740x

    Article  Google Scholar 

  45. Numan, A., et al.: Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. J. Alloy. Compd. 819, 153019 (2020). https://doi.org/10.1016/j.jallcom.2019.153019

    Article  Google Scholar 

  46. Kim, S., Zhang, Z., Wang, S., Yang, L., Cairns, E.J., Penner-Hahn, J.E., Deb, A.: Electrochemical and structural investigation of the mechanism of irreversibility in Li3V2(PO4)3 cathodes. J. Phys. Chem. C, 120, 7005 (2016). https://doi.org/10.1021/acs.jpcc.6b00408

  47. Wei, D., Haque, S., Andrew, P., Kivioja, J., Ryhänen, T., Pesquera, A., Centeno, A., Alonso, B., Chuvilin, A., Zurutuza, A.: Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. J. Mater. Chem. A 1, 3177 (2013). https://doi.org/10.1039/c3ta01183f

    Article  Google Scholar 

  48. Colmiais, I., Silva, V., Borme, J., Alpuim, P., Mendes, P.M.: Towards RF graphene devices: a review. FlatChem 100409 (2022)

    Google Scholar 

  49. Santra, C.R.: A mini review on graphene-A wonder material for new industrial and biomedical applications. Am. J. Appl. Bio-Technol. Res. 2(1), 26–29 (2021)

    Article  Google Scholar 

  50. Wasfi, A., Awwad, F., Ayesh, A.I.: Graphene-based nanopore approaches for DNA sequencing: a literature review. Biosens. Bioelectron. 119, 191–203 (2018)

    Article  Google Scholar 

  51. Mancosu, N., Snyder, R.L., Kyriakakis, G., Spano, D.: Water scarcity and future challenges for food production. Water 7(3), 975–992 (2015)

    Article  Google Scholar 

  52. Mopoung, S., Moonsri, P., Palas, W., Khumpai, S.: Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. Sci. World J., (2015)

    Google Scholar 

  53. Shao, H., Wu, Y.C., Lin, Z., Taberna, P.L. and Simon, P.: Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49(10), 3005–303 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Ramesh or S. Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthuvinayagam, M., Ashok Kumar, S.S., Ramesh, K., Ramesh, S. (2023). Introduction of Graphene: The “Mother” of All Carbon Allotropes. In: Subramaniam, R.T., Kasi, R., Bashir, S., Kumar, S.S.A. (eds) Graphene. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1206-3_2

Download citation

Publish with us

Policies and ethics