Skip to main content

Sewage Sludge Particle Surface Interactions: Technology and Purification Approaches

  • Chapter
  • First Online:
Microbial Fuel Cell (MFC) Applications for Sludge Valorization

Abstract

Interparticle surface interactions between the sludge are a dominant factor in the development of purification technology. The interplay between coagulation/flocculation and stabilization is heavily dependent on the colloidal characteristics of the sludge in water, where when the surfaces possess charges, the interactions can be summarized by the classical DLVO theory. The basis of this theory considers many factors including the chemical composition of the sludge particles and water components such as extracellular polymeric substances and heavy metals. Sludge stabilization is an essential procedure in anaerobic digestion, where polymeric coagulants are commonly added to convert the sludge into priceless energy sources. This green energy can also be generated through microbial fuel cell technology by utilizing sludge waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garg S (2022) Industrial wastewater: characteristics, treatment techniques and reclamation of water. In: Advanced industrial wastewater treatment and reclamation of water. Springer, p 1–23. https://doi.org/10.1007/978-3-030-83811-9_1

  2. Negi P, Verma H, Singh SP, Mahapatra BS, Jatav HS (2022) Global scenario of sewage-sludge management. In Sustainable management and utilization of sewage sludge. Springer, pp 383–401. https://doi.org/10.1007/978-3-030-85226-9_18

  3. Gong Z, Guo J, Li Q, Xie H (2022) Lipopolysaccharide-stabilized ionic colloids induce biomineralization. Colloids Surf B Biointerfaces 211:112331. https://doi.org/10.1016/j.colsurfb.2022.112331

  4. Tetteh EK, Rathilal S (2018) Effects of a polymeric organic coagulant for industrial mineral oil wastewater treatment using response surface methodology (RSM). Water Sa 44(2):155–161. https://doi.org/10.4314/wsa.v44i2.02

    Article  CAS  Google Scholar 

  5. Lian S, Fan S, Yang Y, Yu B, Dai C, Qu Y (2022) Selenium nanoparticles with photocatalytic properties synthesized by residual activated sludge. Sci Total Environ 809:151163. https://doi.org/10.1016/j.scitotenv.2021.151163Get

    Article  CAS  Google Scholar 

  6. Mohd Zaini Makhtar M, Tajarudin HA, Samsudin MDM, Vadivelu VM, Shoparwe NF, Zainuddin NI (2021) Membrane-less microbial fuel cell: Monte Carlo simulation and sensitivity analysis for COD removal in dewatered sludge. AIP Adv 11(6):065016. https://doi.org/10.1063/5.0039014

  7. Do K-U, Chu X-Q (2022) Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention time. Dev Wastewater Treat Res Process: 107–122. https://doi.org/10.1016/B978-0-323-85583-9.00010-7

  8. Ruiz-Hernando M, Vinardell S, Labanda J, Llorens J (2022) Effect of ultrasonication on waste activated sludge rheological properties and process economics. Water Res 208:117855. https://doi.org/10.1016/j.watres.2021.117855

    Article  CAS  Google Scholar 

  9. Huang Z, Wang Y, Jiang L, Xu B, Wang Y, Zhao H et al (2018) Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment. Chem Eng J 334:732–740. https://doi.org/10.1016/j.cej.2017.10.076

    Article  CAS  Google Scholar 

  10. Jiang J-Q (2015) The role of coagulation in water treatment. Curr Opin Chem Eng 8:36–44. https://doi.org/10.1016/j.coche.2015.01.008

    Article  Google Scholar 

  11. Sharp EL, Parson SA, Jefferson B (2006) Coagulation of NOM: linking character to treatment. Water Sci Technol 53(7):67–76. https://doi.org/10.2166/wst.2006.209

    Article  CAS  Google Scholar 

  12. Alazaiza MYD, Albahnasawi A, Ali GAM, Bashir MJK, Nassani DE, Al Maskari T et al (2022) Application of natural coagulants for pharmaceutical removal from water and wastewater: a review. Water 14(2):140. https://doi.org/10.3390/w14020140

    Article  CAS  Google Scholar 

  13. Rodriguez AZ, Wang H, Hu L, Zhang Y, Xu P (2020) Treatment of produced water in the Permian basin for hydraulic fracturing: Comparison of different coagulation processes and innovative filter media. Water 12(3):770. https://doi.org/10.3390/w12030770

    Article  CAS  Google Scholar 

  14. Rydzek G, Ji Q, Li M, Schaaf P, Hill JP, Boulmedais F, Ariga K (2015) Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future. Nano Today 10(2):138–167

    Google Scholar 

  15. Arnold-Smith AK, Christie RM, Jolicoeur C (1992) Polyaluminium silicate sulphate—a new coagulant for potable and wastewater treatment. In: Chemical water and wastewater treatment II. Springer. pp 203–219. https://doi.org/10.1007/978-3-642-77827-8_14

  16. Brandt MJ, Johnson KM, Elphinston AJ, Ratnayaka DD (2017) Storage, clarification and chemical treatment. In: Twort’s water supply. Elsevier, pp 323–66. https://doi.org/10.1016/B978-0-7506-6843-9.00015-9

  17. Liu C, He Y, Li F, Wang H (2013) Preparation of poly ferric sulfate and the application in micro-polluted raw water treatment. J Chin Adv Mater Soc 1(3):210–218. https://doi.org/10.1080/22243682.2013.835120

    Article  CAS  Google Scholar 

  18. Barrera-Díaz CE, Balderas-Hernández P, Bilyeu B (2018) Electrocoagulation: fundamentals and prospective. In: Electrochemical water and wastewater treatment. Elsevier, pp 61–76. https://doi.org/10.1016/B978-0-12-813160-2.00003-1

  19. Wang H-F, Hu H, Wang H-J, Zeng RJ (2019) Combined use of inorganic coagulants and cationic polyacrylamide for enhancing dewaterability of sewage sludge. J Clean Prod 211:387–395. https://doi.org/10.1016/j.jclepro.2018.11.208

    Article  CAS  Google Scholar 

  20. Tetteh EK, Rathilal S (2019) Application of organic coagulants in water and wastewater treatment. Org Polym.

    Google Scholar 

  21. Ravina L, Moramarco N (1993). Everything you want to know about coagulation & flocculation. Zeta-Meter, Inc., Staunton, pp 1–37

    Google Scholar 

  22. Kamizela T, Kowalczyk M (2019) Sludge dewatering: processes for enhanced performance. In: Industrial and municipal sludge. Elsevier, pp 399–423. https://doi.org/10.1016/B978-0-12-815907-1.00018-0

  23. Maćczak P, Kaczmarek H, Ziegler-Borowska M (2020) Recent achievements in polymer bio-based flocculants for water treatment. Materials 13(18):3951. https://doi.org/10.3390/ma13183951

    Article  CAS  Google Scholar 

  24. Shokri A, Fard MS (2022) A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere 288:132355. https://doi.org/10.1016/j.chemosphere.2021.132355

    Article  CAS  Google Scholar 

  25. Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2009) Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25(12):6968–6976. https://doi.org/10.1021/la9001237

    Article  CAS  Google Scholar 

  26. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Santa Barbara, CA, USA, p 704

    Google Scholar 

  27. Spitzer JJ (2003) A consistent alternative to the DLVO theory. J Adhes 79(10):893–903. https://doi.org/10.1080/714906147

    Article  CAS  Google Scholar 

  28. Langford A, Bruchsaler M, Gupta M (2022) Suspension properties and characterization of aluminum-adjuvanted vaccines. In: Practical aspects of vaccine development. Elsevier, pp 225–266. https://doi.org/10.1016/B978-0-12-814357-5.00008-8

  29. Hussain G, Robinson A, Bartlett P (2013) Charge generation in low-polarity solvents: poly (ionic liquid)-functionalized particles. Langmuir 29(13):4204–4213. https://doi.org/10.1021/la3049086

    Article  CAS  Google Scholar 

  30. Bajpai M, Katoch SS, Kadier A, Singh A (2022) A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. Environ Sci Pollut Res 29:1–30. https://doi.org/10.1007/s11356-021-18348-8

  31. Mateos H, Palazzo G (2022) Colloidal stability. In: Colloidal foundations of nanoscience. Elsevier, pp 57–83. https://doi.org/10.1016/B978-0-12-822089-4.00001-5

  32. Tytła M (2019) Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland—case study. Int J Environ Res Public Health 16(13):2430. https://doi.org/10.3390/ijerph16132430

    Article  CAS  Google Scholar 

  33. Lee Y-C, Lo S-L, Kuo J, Tsai C-C (2012) Beneficial uses of sludge from water purification plants in concrete mix. Environ Eng Sci 29(4):284–289. https://doi.org/10.1089/ees.2010.0479

    Article  CAS  Google Scholar 

  34. Dai X, Xu Y, Lu Y, Dong B (2017) Recognition of the key chemical constituents of sewage sludge for biogas production. RSC Adv 7(4):2033–2037. https://doi.org/10.1039/C6RA26180A

    Article  CAS  Google Scholar 

  35. Liu Z, Smith SR (2019) Enzyme activity of waste activated sludge extracts. Water Sci Technol 80(10):1861–1869. https://doi.org/10.2166/wst.2020.002

    Article  CAS  Google Scholar 

  36. Ahmadi MM, Soheili M, Esfahani MM (2005) Effect of ionic strength on settling of activated sludge. Iranian J Env Health Sci Eng 2:1–5

    Google Scholar 

  37. Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T et al (2019) Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge. J Eng Appl Sci 14(11):2139–2145

    CAS  Google Scholar 

  38. Tytła M, Widziewicz K, Zielewicz E (2016) Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ Technol 37(7):899–908. https://doi.org/10.1080/09593330.2015.1090482

    Article  CAS  Google Scholar 

  39. Miranda LS, Wijesiri B, Ayoko GA, Egodawatta P, Goonetilleke A (2021) Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res 202:117386. https://doi.org/10.1016/j.watres.2021.117386

    Article  CAS  Google Scholar 

  40. Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101(9):1201–1213. https://doi.org/10.1016/j.jinorgbio.2007.06.003

    Article  CAS  Google Scholar 

  41. Keshavarzifard M, Moore F, Sharifi R (2019) The influence of physicochemical parameters on bioavailability and bioaccessibility of heavy metals in sediments of the intertidal zone of Asaluyeh region, Persian Gulf, Iran. Geochemistry 79(1):178–187. https://doi.org/10.1016/j.geoch.2018.12.007

    Article  CAS  Google Scholar 

  42. Wang J, Huang CP (2002) Heavy metal interactions with activated sludge particulates. Proc Water Environ Fed 2002(15):48–60. https://doi.org/10.2175/193864702784247314

    Article  Google Scholar 

  43. Tian Y, Zheng L, Sun D-z (2006) Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest. J Environ Sci 18(3):420–427

    Google Scholar 

  44. Higgins MJ, Novak JT (1997) Characterization of exocellular protein and its role in bioflocculation. J Environ Eng 123(5):479–485. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(479)

    Article  CAS  Google Scholar 

  45. Park C, Novak JT (2007) Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res 41(8):1679–1688. https://doi.org/10.1016/j.watres.2007.01.031

    Article  CAS  Google Scholar 

  46. Liu X-M, Sheng G-P, Luo H-W, Zhang F, Yuan S-J, Xu J et al (2010) Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol 44(11):4355–4360. https://doi.org/10.1021/es9016766

    Article  CAS  Google Scholar 

  47. Zita A, Hermansson M (1994) Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Appl Environ Microbiol 60(9):3041–3048. https://doi.org/10.1128/aem.60.9.3041-3048.1994

    Article  CAS  Google Scholar 

  48. Guo X, Wang X, Liu J (2016) Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep28391

    Article  CAS  Google Scholar 

  49. Badireddy AR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM (2010) Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res 44(15):4505–4516. https://doi.org/10.1016/j.watres.2010.06.024

    Article  CAS  Google Scholar 

  50. Bieganowski A, Lagod G, Ryzak M, Montusiewicz A, Chomczynska M, Sochan A (2012) Measurement of activated sludge particle diameters using laser diffraction method/Pomiary srednicy czastek osadu czynnego za pomoca metody dyfrakcji laserowej. Ecol Chem Eng 19(4):597. https://doi.org/10.2478/v10216-011-0042-7

    Article  Google Scholar 

  51. Wilén B-M, Nielsen JL, Keiding K, Nielsen PH (2000) Influence of microbial activity on the stability of activated sludge flocs. Colloids Surf, B 18(2):145–156. https://doi.org/10.1016/S0927-7765(99)00138-1

    Article  Google Scholar 

  52. Yargeau V (2012) Water and wastewater treatment: chemical processes. In: Metropolitan sustainability. Elsevier, pp 390–405. https://doi.org/10.1533/9780857096463.3.390

  53. Hutchison PR, Healy TW (1990) Coagulation and flocculation—destabilizing practices? (With particular reference to metal ion coagulants). In: Surface and colloid chemistry in natural waters and water treatment. Springer, pp 119–134. https://doi.org/10.1007/978-1-4899-2510-7_9

  54. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail NI, Hasan HA et al (2020) Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int J Environ Res Public Health 17(24):9312. https://doi.org/10.3390/ijerph17249312

    Article  CAS  Google Scholar 

  55. Tyagi VK, Lo SL (2016) Energy and resource recovery from sludge: full-scale experiences. In: Environmental materials and waste. Elsevier, pp 221–244. https://doi.org/10.1016/B978-0-12-803837-6.00010-X

  56. Braguglia CM, Mininni G, Rolle E (2006) Influence of anaerobic digestion on particle surface charge and optimal polymer dosage. Water Sci Technol 54(5):43–50. https://doi.org/10.2166/wst.2006.545

    Article  CAS  Google Scholar 

  57. Chu CP, Lee DJ, Chang B-V, You CH, Liao CS, Tay JH (2003) Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere 53(7):757–764. https://doi.org/10.1016/S0045-6535(03)00553-8

    Article  CAS  Google Scholar 

  58. Zhang Z, Zhang Q, Chen Y, Li Z (2018) Poly (dimethyldiallylammonium chloride) (polyDADMAC) assisted cellulase pretreatment for microfibrillated cellulose (MFC) preparation and MFC analysis. Holzforschung 72(7):531–538. https://doi.org/10.1515/hf-2017-0152

    Article  CAS  Google Scholar 

  59. Feizi ZH, Kazzaz AE, Kong F, Fatehi P (2019) Evolving a flocculation process for isolating lignosulfonate from solution. Sep Purif Technol 222:254–263. https://doi.org/10.1016/j.seppur.2019.04.042

    Article  CAS  Google Scholar 

  60. Geng C-X, Cao N, Xu W, He C, Yuan Z-W, Liu J-W et al (2018) Molecular characterization of organics removed by a covalently bound inorganic–organic hybrid coagulant for advanced treatment of municipal sewage. Environ Sci Technol 52(21):12642–12648. https://doi.org/10.1021/acs.est.8b03306

    Article  CAS  Google Scholar 

  61. Zahrim AY, Dexter ZD, Joseph CG, Hilal N (2017) Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: decolourisation, kinetics and phytotoxicity studies. J Water Process Eng 16:258–269. https://doi.org/10.1016/j.jwpe.2017.02.005

    Article  Google Scholar 

  62. Oladejo J, Shi K, Luo X, Yang G, Wu T (2019) A review of sludge-to-energy recovery methods. Energies 12(1):60. https://doi.org/10.3390/en12010060

    Article  CAS  Google Scholar 

  63. Gude VG (2016) Microbial fuel cells for wastewater treatment and energy generation. In: Microbial electrochemical and fuel cells. Elsevier, pp 247–285. https://doi.org/10.1016/B978-1-78242-375-1.00008-3

  64. Yuan Y, Yuan T, Wang D, Tang J, Zhou S (2013) Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Biores Technol 144:115–120. https://doi.org/10.1016/j.biortech.2013.06.075

    Article  CAS  Google Scholar 

  65. Muaz MZM, Abdul R, Vadivelu VM (2019) Recovery of energy and simultaneous treatment of dewatered sludge using membrane-less microbial fuel cell. Environ Prog Sustainable Energy 38(1):208–219. https://doi.org/10.1002/ep.12919

    Article  CAS  Google Scholar 

  66. Karlikanovaite-Balikci A, Özgün ÖK (2020) Generation of electricity and sludge reduction in a microbial fuel cell. J Int Environ Appl Sci 15(3):141–151

    CAS  Google Scholar 

  67. Wang J, Zhao S, Kakade A, Kulshreshtha S, Liu P, Li X (2019) A review on microbial electrocatalysis systems coupled with membrane bioreactor to improve wastewater treatment. Microorganisms 7(10):372. https://doi.org/10.3390/microorganisms7100372

    Article  CAS  Google Scholar 

  68. Tian Y, Li H, Li L, Su X, Lu Y, Zuo W et al (2015) In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation. Biosens Bioelectron 64:189–195. https://doi.org/10.1016/j.bios.2014.08.070

    Article  CAS  Google Scholar 

  69. Demirbas A, Taylan O, Kaya D (2016) Biogas production from municipal sewage sludge (MSS). Energ Sources Part A 38(20):3027–3033. https://doi.org/10.1080/15567036.2015.1124944

    Article  CAS  Google Scholar 

  70. Kalloum S, Bouabdessalem H, Touzi A, Iddou A, Ouali MS (2011) Biogas production from the sludge of the municipal wastewater treatment plant of Adrar city (southwest of Algeria). Biomass Bioenerg 35(7):2554–2560. https://doi.org/10.1016/j.biombioe.2011.02.012

    Article  CAS  Google Scholar 

  71. Chow WL, Chong S, Lim JW, Chan YJ, Chong MF, Tiong TJ et al (2020) Anaerobic co-digestion of wastewater sludge: a review of potential co-substrates and operating factors for improved methane yield. Processes 8(1):39. https://doi.org/10.3390/pr8010039

    Article  CAS  Google Scholar 

  72. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032

    Article  CAS  Google Scholar 

  73. Zulkifli AA, Mohd Yusoff MZ, Abd Manaf L, Zakaria MR, Roslan AM, Ariffin H et al (2019) Assessment of municipal solid waste generation in Universiti Putra Malaysia and its potential for green energy production. Sustainability 11(14):3909. https://doi.org/10.3390/su11143909

    Article  Google Scholar 

  74. Maragkaki AE, Fountoulakis M, Kyriakou A, Lasaridi K, Manios T (2018) Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manage 71:605–611. https://doi.org/10.1016/j.wasman.2017.04.024

    Article  CAS  Google Scholar 

  75. Wang G, Dai X, Zhang D, He Q, Dong B, Li N et al (2018) Two-phase high solid anaerobic digestion with dewatered sludge: improved volatile solid degradation and specific methane generation by temperature and pH regulation. Biores Technol 259:253–258. https://doi.org/10.1016/j.biortech.2018.03.074

    Article  CAS  Google Scholar 

  76. Ayodele TR, Alao MA, Ogunjuyigbe ASO, Munda JL (2019) Electricity generation prospective of hydrogen derived from biogas using food waste in south-western Nigeria. Biomass Bioenerg 127:105291. https://doi.org/10.1016/j.biombioe.2019.105291

    Article  CAS  Google Scholar 

  77. Cudjoe D, Han MS, Nandiwardhana AP (2020) Electricity generation using biogas from organic fraction of municipal solid waste generated in provinces of China: techno-economic and environmental impact analysis. Fuel Process Technol 203:106381. https://doi.org/10.1016/j.fuproc.2020.106381

    Article  CAS  Google Scholar 

  78. Pfau SF, Hagens JE, Dankbaar B (2017) Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role. Energy Sustain Soc 7(1):1–15. https://doi.org/10.1186/s13705-017-0120-5

    Article  Google Scholar 

  79. European Environment Agency (2021) Share of energy consumption from renewable sources in Europe 2021. https://www.eea.europa.eu/ims/share-of-energy-consumption-from

  80. Dai X, Duan N, Dong B, Dai L (2013) High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manage 33(2):308–316. https://doi.org/10.1016/j.wasman.2012.10.018

    Article  CAS  Google Scholar 

  81. Borowski S, Domański J, Weatherley L (2014) Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Manage 34(2):513–521. https://doi.org/10.1016/j.wasman.2013.10.022

    Article  CAS  Google Scholar 

  82. Afifah U, Priadi CR (eds) (2017). Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste. AIP Publishing LLC. https://doi.org/10.1063/1.4979248

  83. Kim Y, Parker W (2008) A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Biores Technol 99(5):1409–1416. https://doi.org/10.1016/j.biortech.2007.01.056

    Article  CAS  Google Scholar 

  84. Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrol 101:72–78. https://doi.org/10.1016/j.jaap.2013.02.010

    Article  CAS  Google Scholar 

  85. Fonts I, Gea G, Azuara M, Ábrego J, Arauzo J (2012) Sewage sludge pyrolysis for liquid production: a review. Renew Sustain Energy Rev 16(5):2781–2805. https://doi.org/10.1016/j.rser.2012.02.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Sains Malaysia for the financial support of this study via APEX Era grant (1001/PBAHAN/881008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Danial Shafiq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdul Rahman, A.M.N.A., Ahamad Said, M.N., Shafiq, M.D. (2023). Sewage Sludge Particle Surface Interactions: Technology and Purification Approaches. In: Mohd Zaini Makhtar, M., Shukor, H., Yaser, A.Z. (eds) Microbial Fuel Cell (MFC) Applications for Sludge Valorization. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1083-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1083-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1082-3

  • Online ISBN: 978-981-99-1083-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics