Skip to main content

An Insight of Component and Typical Mechanism of Sludge Degrader Microbes in Dewatered Sludge

  • Chapter
  • First Online:
Microbial Fuel Cell (MFC) Applications for Sludge Valorization

Abstract

This book chapter provides insights into the potential of wastewater sludge and the characteristics of different types of sludge. Each type of sludge has unique characteristics, microorganism consortium, and reactions that occur within the sludge. The behavior of sludge, typical microorganism degraders, and reactions involved in the natural process transform complex substrates into simpler ones. The presence of microbial degraders is crucial for the exploitation of sludge valorization for future sustainability. The chapter explores the components and typical mechanisms of sludge degrader microbes in dewatered sludge. The understanding of the microbial degraders present in sludge is essential for the development of sustainable approaches to sludge management. The exploitation of sludge valorization has the potential to provide renewable energy sources, contribute to the circular economy, and reduce the environmental impact of sludge disposal. This book chapter highlights the importance of microbial degraders in the transformation of complex substrates into simpler ones and the need for sustainable approaches to exploit the potential of sludge valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed T, et al (2019) Biomass and bioenergy hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenergy 130(August):105384. https://doi.org/10.1016/j.biombioe.2019.105384

  2. Duncan SM, Alkasrawi M, Gurram R, Almomani F, Wiberley-Bradfordand AE, Singsaas E (2020) Paper mill sludge as a source of sugars for use in the production of bioethanol and isoprene. Energies 13(18). https://doi.org/10.3390/en13184662

  3. Doas N, Ghandour MA, Abd-alla MH (2018) Sludge reduction in wastewater of beet sugar industry using the effective microorganisms. In Abu Qurqas sugar factory. Egypt Sugar J 10:63–82

    Google Scholar 

  4. Oladejo J, Shi K, Luo X, Yang G, Wu T (2019) A review of sludge-to-energy recovery methods. Energies 12(1):1–38. https://doi.org/10.3390/en12010060

    Article  CAS  Google Scholar 

  5. Tambo N, Kobayashi M, Thebault P, Haubry A (1982) Sludge treatment and disposal, vol 1, no 2/3. IWA

    Google Scholar 

  6. Yildiz BS (2012) 18—Water and wastewater treatment: biological processes. In Zeman FBT-MS (ed) Woodhead Publishing series in energy. Woodhead Publishing, Sawston, pp 406–428

    Google Scholar 

  7. Kumar V, Chopra AK, Kumar A (2017) A review on sewage sludge (biosolids) a resource for sustainable agriculture. Arch Agric Environ Sci 2(4):340–347. https://doi.org/10.26832/24566632.2017.020417

    Article  Google Scholar 

  8. Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H (2020) Selective adsorption and recovery of volatile fatty acids from fermented landfill leachate by activated carbon process. Sci Total Environ 707:134533. https://doi.org/10.1016/j.scitotenv.2019.134533

  9. Raharja R, Murdiyatmo U, Sutrisno A, Wardani AK (2019) Bioethanol production from sugarcane molasses by instant dry yeast. IOP Conf Ser Earth Environ Sci, 230(1). https://doi.org/10.1088/1755-1315/230/1/012076

  10. Anukam A, Mohammadi A, Naqvi M, Granström K, A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency, pp 1–19.

    Google Scholar 

  11. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12(4):247–256. https://doi.org/10.1023/A:1013116728817

    Article  CAS  Google Scholar 

  12. Park J, Park S, Kim M (2015) Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge, April. https://doi.org/10.1080/09593330.2013.863951

  13. Singh S, et al (2020) Enhanced methanization of long-chain fatty acid wastewater at 20°c in the novel dynamic sludge chamber–fixed film bioreactor. Front Energy Res, 8:166 [Online]. https://www.frontiersin.org/article/10.3389/fenrg.2020.00166

  14. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. https://doi.org/10.1111/j.1574-6941.2009.00680.x

  15. Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145(2):142–147. https://doi.org/10.1007/BF00446771

    Article  CAS  Google Scholar 

  16. Hatamoto M, Imachi H, Ohashi A, Harada H (2007) Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl Environ Microbiol 73(4):1332–1340. https://doi.org/10.1128/AEM.02053-06

    Article  CAS  Google Scholar 

  17. Moestedt J, Westerholm M, Isaksson S, Schnürer A (2020) Inoculum source determines acetate and lactate production during anaerobic digestion of sewage sludge and food waste. Bioengineering, 7(1). https://doi.org/10.3390/bioengineering7010003

  18. Batstone DJ, Pind PF, Angelidaki I (2003) Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol Bioeng 84(2):195–204. https://doi.org/10.1002/bit.10753

    Article  CAS  Google Scholar 

  19. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2008) Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol 74(11):3610–3614. https://doi.org/10.1128/AEM.00045-08

    Article  CAS  Google Scholar 

  20. Sidhu C, Vikram S, Pinnaka AK (2017) Unraveling the microbial interactions and metabolic potentials in pre- and post-treated sludge from a wastewater treatment plant using metagenomic studies, 8(July): 1–10. https://doi.org/10.3389/fmicb.2017.01382

  21. The Scientific World Journal (2017) Retracted: microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2017:3852369. https://doi.org/10.1155/2017/3852369

    Article  CAS  Google Scholar 

  22. Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355. https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3%3c342::AID-BIT11%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  23. Detman A et al (2021) Evaluation of acidogenesis products’ effect on biogas production performed with metagenomics and isotopic approaches. Biotechnol Biofuels 14(1):125. https://doi.org/10.1186/s13068-021-01968-0

    Article  CAS  Google Scholar 

  24. Chen X, Sun Y, Xiu Z, Li X, Zhang D (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31(4):539–549. https://doi.org/10.1016/j.ijhydene.2005.03.013

    Article  CAS  Google Scholar 

  25. Zigová J, Šturdı́k E, Vandák D, Schlosser S (1999) Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem 34:835–843. https://doi.org/10.1016/S0032-9592(99)00007-2

  26. Vignais P, Billoud B, Meyer J (2001) Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. https://doi.org/10.1111/j.1574-6976.2001.tb00587.x

    Article  CAS  Google Scholar 

  27. Kurokawa T, Tanisho S (2005) Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Mar Biotechnol 7(2):112–118. https://doi.org/10.1007/s10126-004-3088-z

    Article  CAS  Google Scholar 

  28. Tran TTT, Kannoorpatti K, Padovan A, Thennadil S (2021) Sulphate-reducing bacteria’s response to extreme ph environments and the effect of their activities on microbial corrosion. Appl Sci 11(5):1–19. https://doi.org/10.3390/app11052201

    Article  CAS  Google Scholar 

  29. Rubio-rincón F, et al (2017) Effects of electron acceptors on sulphate reduction activity in activated sludge processes, pp 6229–6240. https://doi.org/10.1007/s00253-017-8340-3

  30. Wake LV, Christopher RK, Rickard PAD, Andersen JE, Ralph BJ (1977) A thermodynamic assessment of possible substrates for sulphate-reducing bacteria. Aust J Biol Sci 30(2):155–172. https://doi.org/10.1071/BI9770155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Sains Malaysia for the financial support of this study via APEX Era grant (1001/PTEKIND/881004). The authors have declared no conflict of interest for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muaz Mohd Zaini Makhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohd Sabri, M.N.I., Shamsuddin, N.A., Tajarudin, H.A., Hossain, M.S., Mohd Zaini Makhtar, M. (2023). An Insight of Component and Typical Mechanism of Sludge Degrader Microbes in Dewatered Sludge. In: Mohd Zaini Makhtar, M., Shukor, H., Yaser, A.Z. (eds) Microbial Fuel Cell (MFC) Applications for Sludge Valorization. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1083-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1083-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1082-3

  • Online ISBN: 978-981-99-1083-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics