Skip to main content

Progress and Prospect of Orchid Breeding: An Overview

  • Chapter
  • First Online:
Advances in Orchid Biology, Biotechnology and Omics

Abstract

Orchids are valuable plants in the global floricultural market due to their unique flower structure, attractive flower colors, and long flower life. The most critical technique for obtaining ornamental cultivars of orchids is hybrid breeding. This technique is routine work but usually laborious and time consuming mainly due to the long generation time of orchids. The increasing demand for orchids in the floricultural trade might push breeders to produce more varieties with novel characteristics to ensure their competitiveness. Theoretically, the target traits could be focused on flower characteristics including their colors and morphology, and the ability of disease resistance to viruses or other pathogens. In orchid production, numerous intraspecific, intragenic, and intergenic hybrids have been produced and applied through the most commonly used traditional breeding. Using a range of advanced approaches, such as genetic engineering with the aid of multi-omics technologies and genome editing, orchid breeders might have more opportunities and higher efficiency to achieve their breeding goals in the future. This chapter summarized the past and current approaches and their findings in the field of orchid breeding and discussed their possible applications in the horticultural industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apriyanti DH, Arymurthy AM, Handoko LT (2013) Identification of orchid species using content-based flower image retrieval. In: 2013 International conference on computer, control, informatics and its applications (IC3INA). IEEE, pp 53–57

    Chapter  Google Scholar 

  • Balilashaki K, Gantait S, Naderi R, Vahedi M (2015) Capsule formation and asymbiotic seed germination in some hybrids of Phalaenopsis, influenced by pollination season and capsule maturity. Physiol Mol Biol Plants 21(3):341–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezerra GA, Gabriel AVMD, Mariano ED, Cardoso JC (2020) In vitro culture and greenhouse acclimatization of Oncidium varicosum (Orchidaceae) with microorganisms isolated from its roots. Ornamental Hortic 25:407–416

    Article  Google Scholar 

  • Bolaños-Villegas P, Chang C, Chen F-C (2021) The tiny twig epiphyte Erycina pusilla, a model for orchid genome and breeding research. In: The Orchid Genome. Springer, pp 41–47

    Chapter  Google Scholar 

  • Bulpitt C (2005) The uses and misuses of orchids in medicine. QJM 98(9):625–631

    Article  CAS  PubMed  Google Scholar 

  • Chai D, Yu H (2007) Recent advances in transgenic orchid production. Orchid Sci Biotechnol 1(2):34–39

    Google Scholar 

  • Chang L, Chang H-H, Chiu Y-S, Chang J-C, Hsu D-W, Tzean Y, Cheng A-P, Lu H-C, Yeh H-H (2019) Plant A20/AN1 proteins coordinate different immune responses including RNAi pathway for antiviral immunity. bioRxiv:622696

    Google Scholar 

  • Chao YT, Chen WC, Chen CY, Ho HY, Yeh CH, Kuo YT, Su CL, Yen SH, Hsueh HY, Yeh JH (2018) Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol J 16(12):2027–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheamuangphan A, Panmanee C, Tansuchat R (2013) Value chain analysis for orchid cut flower business in Chiang Mai. Bus Inf:712–721

    Google Scholar 

  • Chen J, Wang L, Chen J, Huang J, Liu F, Guo R, Yang L, Grabon A, Zhao K, Kong F (2018) Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl. In Vitro Cell Dev Biol Plant 54(3):228–239

    Article  Google Scholar 

  • Chen W-H, Kao Y-L, Tang C-Y, Jean G-T (2011) Endopolyploidy in Phalaenopsis orchids and its application in polyploid breeding. In: Orchid biotechnology II. World Scientific, pp 25–48

    Chapter  Google Scholar 

  • Chin DP, Mishiba K-I, Mii M (2007) Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Chung Y-L, Kuo Y-T, Wu W-L (2017) Development of SSR markers in Phalaenopsis orchids, their characterization, cross-transferability and application for identification. In: Orchid biotechnology III. World Scientific, pp 91–107

    Chapter  Google Scholar 

  • Claessens J, Kleynen J (2016) Orchidées dEurope. Fleur et pollinisation. Biotope éditions, Mèze France, p 448

    Google Scholar 

  • Cui-Cui Y, Zhang Y, Jing-Hua Z, Yao-Yao C, An-Dong W (2010) Tetraploid induction by colchicine and identification in Cymbidium interspecific hybrids. J Nuclear Agric Sci 24(3):518

    Google Scholar 

  • da Silva JAT, Winarto B, Dobránszki J, Cardoso JC, Zeng S (2016) Tissue disinfection for preparation of culture. Folia Hortic 28(1):57–75

    Article  Google Scholar 

  • De L, Rao A, Rajeevan P, Pathak P (2014) Orchid improvement—an overview. J Orchid Soc India 28:35–45

    Google Scholar 

  • De LC, Bhattacharjee SK (2011) Ornamental crop breeding. Aavishkar Publishers & Distributors, Jaipur, Rajasthan, India

    Google Scholar 

  • Deng CK (1990) Orchid Culture. Szechuan Scientific Technology Press, Chengdu, China (inChinese)

    Google Scholar 

  • Fei X, Qinhua L, Wanping F, Yajun Y, Xinchao W, Xujun Z, Yuchun W (2020) Genome-wide identification and expression analyses of PAL genes under biotic and abiotic stress in Camellia sinensis. Acta Hortic Sinica 47(3):517

    Google Scholar 

  • Gao Y, Zhao Z, Li J, Liu N, Jacquemyn H, Guo S, Xing X (2020) Do fungal associates of co-occurring orchids promote seed germination of the widespread orchid species Gymnadenia conopsea? Mycorrhiza 30(2):221–228

    Article  CAS  PubMed  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop Res 143:18–33

    Article  Google Scholar 

  • Hartati S, Nandariyah YA, Djoar DW (2019) Hybridization technique of black orchid (Coelogyne pandurata Lindley) to enrich the genetic diversity and to rescue the genetic extinction. Bulgarian J Agric Sci 25(4):751–755

    Google Scholar 

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng S, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32(2):69–139

    Article  CAS  Google Scholar 

  • Hsing H-X, Lin Y-J, Tong C-G, Li M-J, Chen Y-J, Ko S-S (2016) Efficient and heritable transformation of Phalaenopsis orchids. Bot Stud 57(1):1–12

    Article  CAS  Google Scholar 

  • Indan H, David D, Jawan R, Marbawi H, Gansau JA (2021) Development and characterization of flower and capsule in Borneo jewel orchid Macodes limii JJ wood and AL lamb (Orchidaceae: Asparagales). J Asia-Pac Biodivers 14(2):236–241

    Article  Google Scholar 

  • Jiang G-L (2015) Molecular marker-assisted breeding: a plant breeder’s review. In: Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, pp 431–472

    Chapter  Google Scholar 

  • Joffard N, Massol F, Grenié M, Montgelard C, Schatz B (2019) Effect of pollination strategy, phylogeny and distribution on pollination niches of Euro-Mediterranean orchids. J Ecol 107(1):478–490

    Article  Google Scholar 

  • Johnson SD, Edwards T (2000) The structure and function of orchid pollinaria. Plant Syst Evol 222(1):243–269

    Article  Google Scholar 

  • Khumkarjorn N, Thanonkeo S, Yamada M, Klanrit P, Thanonkeo P (2017) Agrobacterium-mediated transformation of Dendrobium orchid with the flavanone 3-hydroxylase gene. Turk J Bot 41(5):442–454

    Article  CAS  Google Scholar 

  • Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73(1):1–25

    Article  Google Scholar 

  • Kuehnle AR, Sugii N (1992) Transformation of dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11(9):484–488

    Article  CAS  PubMed  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Lapjit C, Tseng M-J (2015) Effects of LEDs (light-emitting diodes) lights on the in vitro growth of Erycina pusilla. Hortic NCHU 40(2):23–38

    Google Scholar 

  • Lee S-H, Li C-W, Liau C-H, Chang P-Y, Liao L-J, Lin C-S, Chan M-T (2015) Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla. Plant Cell Tissue Organ Cult 120(1):211–220

    Article  CAS  Google Scholar 

  • Li C-W, Chan M-T (2018) Recent protocols on genetic transformation of orchid species. In: Orchid propagation: from laboratories to greenhouses—methods and protocols. Springer, pp 367–383

    Google Scholar 

  • Li D, Zhao C, Liu X, Liu X, Lin Y, Liu J, Chen H, LÇš F (2015) De novo assembly and characterization of the root transcriptome and development of simple sequence repeat markers in Paphiopedilum concolor. Genet Mol Res 14(2):6189–6201

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Su X, Ma H, Du K, Yang M, Chen B, Fu S, Fu T, Xiang C, Zhao Q (2021) Development of genic SSR marker resources from RNA-seq data in Camellia japonica and their application in the genus camellia. Sci Rep 11(1):1–11

    Google Scholar 

  • Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJ, Ko SS, Chan MT, Shih MC (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14(1):284–298

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liu Y, Xu J, Mei Z, Shi Y, Liu P, He J, Wang X, Meng Y, Feng S (2018) High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae). Front Plant Sci 9:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Huang M, Wu J (2012) Progress in Oncidium breeding study. Acta Agric Jiangxi 24(10):15–20

    CAS  Google Scholar 

  • Murthy HN, Paek K-Y, Park S-Y (2018) Micropropagation of orchids by using bioreactor technology. In: Orchid propagation: from laboratories to greenhouses—methods and protocols. Springer, pp 195–208

    Google Scholar 

  • Nirmala C, Nongdam P, Tewari R (2006) Biotechnological and molecular approaches for improvement of orchids. Plant Cell Biotechnol Mol Biol 7:1–10

    CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tissue Organ Cult 98(2):125–134

    Article  CAS  Google Scholar 

  • Reinikka MA (1972) A history of the orchid: by merle a. University of Miami Press, Reinikka. Fla.

    Google Scholar 

  • Reyes HC, Draper D, Marques I (2021) Pollination in the rainforest: scarce visitors and low effective pollinators limit the fruiting success of tropical orchids. Insects 12(10):856

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H (2017) DOAP1 promotes flowering in the orchid dendrobium Chao Praya smile. Front Plant Sci 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Schatz B, Sauvion N, Kjellberg F, Nel A (2017) Plant-insect interactions: a palaeontological and an evolutionary perspective. Adv Bot Res 81:1–24

    Article  Google Scholar 

  • Schiff JL (2018) Rare and exotic orchids: their nature and cultural significance. Springer

    Book  Google Scholar 

  • Semiarti E, Nopitasari S, Setiawati Y, Lawrie MD, Purwantoro A, Widada J, Yoshioka Y, Matsumoto S, Ninomiya K, Asano Y (2020) Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indian J Biotechnol 25(1):61–68

    Article  Google Scholar 

  • Setiawati Y, Nopitasari S, Lawrie MD, Purwantoro A, Widada J, Sasongko AB, Ninomiya K, Asano Y, Matsumoto S, Yoshioka Y (2020) Agrobacterium-mediated transformation facilitates the CRISPR/Cas9 genome editing system in Dendrobium macrophyllum A. Rich orchid. In: AIP Conference Proceedings. AIP Publishing LLC, p 060016

    Google Scholar 

  • Shekarriz P, Kafi M, Deilamy SD, Mirmasoumi M (2014) Coconut water and peptone improve seed germination and protocorm like body formation of hybrid Phalaenopsis. Agric Sci Dev 3(10):317–322

    Google Scholar 

  • Shrestha BR, Chin DP, Tokuhara K, Mii M (2007) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnol 24(4):429–434

    Article  CAS  Google Scholar 

  • Shriram V, Kumar V (2022) Eulophia spp.: In Vitro Generation, Chemical Constituents, and Pharmacological Activities. In: Orchids Phytochemistry, Biology and Horticulture. Springer, pp 495–516

    Chapter  Google Scholar 

  • Tang C-Y, Chen W-H (2007) Breeding and development of new varieties in Phalaenopsis. In: Orchid biotechnology. World Scientific, pp 1–22

    Google Scholar 

  • Tiwari P, Sharma A, Bose SK, Gautam A (2022) Biotechnological interventions in orchids: recent updates, translational success, and commercial outcomes

    Google Scholar 

  • Tong CG, Wu FH, Yuan YH, Chen YR, Lin CS (2020) High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnol J 18(4):889

    Article  PubMed  Google Scholar 

  • Utami ESW, Hariyanto S (2019) In vitro seed germination and seedling development of a rare Indonesian native orchid Phalaenopsis amboinensis JJ Sm. Scientifica 2019:1

    Article  Google Scholar 

  • Wang J, Liu Z, Zhang G, Niu S, Zhang Y, Peng C (2020) Evolution of two ubiquitin-like system of autophagy in orchid. Hortic Plant J 6(5):321–334

    Article  Google Scholar 

  • Wang P, Zheng Y, Lin Y, Zhou Z, Yang J, Ye N (2019) Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis. Acta Botan Boreali-Occiden Sin 39(3):413–421

    Google Scholar 

  • Wang S-Y, Lee P-F, Lee Y-I, Hsiao Y-Y, Chen Y-Y, Pan Z-J, Liu Z-J, Tsai W-C (2011) Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52(3):563–577

    Article  CAS  PubMed  Google Scholar 

  • Xing M, Liu X, Kong C, Yang L, Zhuang M, Zhang Y, Wang Y, Fang Z, Lü H (2019) Whole-genome identification and evolutionary analysis of cabbage NLR family genes and their expression profiles in response to various disease stress. Acta Hortic Sinica 46(4):723–737

    Google Scholar 

  • Xu Q, Wang S, Hong H, Zhou Y (2019) Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 20(1):1–14

    Article  Google Scholar 

  • Yam TW, Arditti J (2009) History of orchid propagation: a mirror of the history of biotechnology. Plant Biotechnol Rep 3(1):1–56

    Article  Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68(1):17086

    Article  Google Scholar 

  • Yang J, Lee H-J, Shin D, Oh S, Seon J, Paek K, Han K-H (1999) Genetic transformation of cymbidium orchid by particle bombardment. Plant Cell Rep 18(12):978–984

    Article  CAS  Google Scholar 

  • Yee NC, Abdullah JO, Mahmood M, Basiron N (2008) Co-transfer of gfp, CHS and hptII genes into Oncidium Sharry baby PLB using the biolistic gun. Afr J Biotechnol 7(15)

    Google Scholar 

  • You S-J, Liau C-H, Huang H-E, Feng T-Y, Prasad V, Hsiao H-H, Lu J-C, Chan M-T (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chin DP, Mii M (2010) Agrobacterium-mediated transformation of protocorm-like bodies in Cattleya. Plant Cell Tissue Organ Cult 103(1):41–47

    Article  Google Scholar 

  • Zhang Q, Li Z, Tang M, Xu C, Xi H (2011) Study on the use of colchicine to induce polyploidy of Dendrobium candidum wall. ex Lindl. J Yunnan Agric Univ 26(5):678–682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Balilashaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balilashaki, K. et al. (2023). Progress and Prospect of Orchid Breeding: An Overview. In: Tiwari, P., Chen, JT. (eds) Advances in Orchid Biology, Biotechnology and Omics. Springer, Singapore. https://doi.org/10.1007/978-981-99-1079-3_9

Download citation

Publish with us

Policies and ethics