Skip to main content

Optimum LQR Controller for Inverted Pendulum Using Whale Optimization Algorithm

  • Conference paper
  • First Online:
Signals, Machines and Automation (SIGMA 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1023))

Included in the following conference series:

Abstract

In this work, a Linear-Quadratic Regulator (LQR)-based control scheme is designed for a highly nonlinear and unstable inverted pendulum system. The system is linearised about its vertical position based on certain assumptions. Initially, weight matrices of the LQR controller are selected based on a trial and error method. These matrices are then optimised using a multi-objective genetic algorithm (GA) and whale optimization algorithm (WOA). The robustness of designed controllers is tested by reference tracking and parametric uncertainty analysis. The results reveal that optimisation of LQR by WOA provides superior performance compared to GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohan V, Rani A, Singh V (2017) Robust adaptive fuzzy controller applied to double inverted pendulum. J Intell Fuzzy Syst 32(5):3669–3687

    Article  Google Scholar 

  2. Mohan V, Singh N (2013) Performance comparison of LQR and ANFIS controller for stabilising double inverted pendulum system. In: 2013 IEEE international conference on signal processing, computing and control (ISPCC), 2013. IEEE, pp 1–6

    Google Scholar 

  3. Lakmesari SH, Mahmoodabadi M, Ibrahim MY (2021) Fuzzy logic and gradient descent-based optimal adaptive robust controller with inverted pendulum verification. Chaos, Solitons Fractals 151:111257

    Article  MathSciNet  MATH  Google Scholar 

  4. Omatu S, Deris S (1996) Stabilization of inverted pendulum by the genetic algorithm. In: Proceedings of IEEE international conference on evolutionary computation, 1996. IEEE, pp 700–705

    Google Scholar 

  5. Chen X, Zhou H, Ma R, Zuo F, Zhai G, Gong M Linear motor driven inverted pendulum and lqr controller design. In: 2007 IEEE International Conference on Automation and Logistics, 2007. IEEE, pp 1750–1754

    Google Scholar 

  6. Chhabra H, Mohan V, Rani A, Singh V (2020) Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator. Neural Comput Appl 32(7):2055–2079

    Article  Google Scholar 

  7. Nguyen NP, Oh H, Kim Y, Moon J (2021) A nonlinear hybrid controller for swinging-up and stabilising the rotary inverted pendulum. Nonlinear Dyn 104(2):1117–1137

    Article  Google Scholar 

  8. Mohan V, Chhabra H, Rani A, Singh V (2019) An expert 2DOF fractional order fuzzy PID controller for nonlinear systems. Neural Comput Appl 31(8):4253–4270

    Article  Google Scholar 

  9. Mohan V, Chhabra H, Rani A, Singh V (2018) Robust self-tuning fractional order PID controller dedicated to nonlinear dynamic system. Journal of Intelligent & Fuzzy Systems 34(3):1467–1478

    Article  Google Scholar 

  10. Mohan V, Pachauri N, Panjwani B, Kamath DV (2022) A novel cascaded fractional fuzzy approach for control of fermentation process. Bioresour Technol 127–377

    Google Scholar 

  11. Dao PN, Liu Y-C (2021) Adaptive reinforcement learning strategy with sliding mode control for unknown and disturbed wheeled inverted pendulum. Int J Control Autom Syst 19(2):1139–1150

    Article  Google Scholar 

  12. Ghoreishi SA, Nekoui MA (2012) Optimal weighting matrices design for LQR controller based on genetic algorithm and PSO. Advanced Materials Research. Trans Tech Publ, pp 7546–7553

    Google Scholar 

  13. Panjwani B, Singh V, Rani A, Mohan V (2021) Optimum multi-drug regime for compartment model of tumour: cell-cycle-specific dynamics in the presence of resistance. J Pharmacokinet Pharmacodyn 48(4):543–562

    Article  Google Scholar 

  14. Aly AA (2011) PID parameters optimisation using genetic algorithm technique for electrohydraulic servo control system. Intell Control Autom 2(02):69

    Article  Google Scholar 

  15. Mirjalili S, Lewis A (2016) The whale optimisation algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  16. Li Q-R, Tao W-H, Sun N, Zhang C-Y, Yao L-H (2008) Stabilization control of double inverted pendulum system. In: 2008 3rd international conference on innovative computing information and control, 2008. IEEE, pp 417–417

    Google Scholar 

  17. Control of an inverted pendulum (2012) https://www.control.isy.liu.se/student/tsrt03/files/invpendpmenglish.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Panjwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panjwani, B., Kumar, V., Yadav, J., Mohan, V. (2023). Optimum LQR Controller for Inverted Pendulum Using Whale Optimization Algorithm. In: Rani, A., Kumar, B., Shrivastava, V., Bansal, R.C. (eds) Signals, Machines and Automation. SIGMA 2022. Lecture Notes in Electrical Engineering, vol 1023. Springer, Singapore. https://doi.org/10.1007/978-981-99-0969-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0969-8_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0968-1

  • Online ISBN: 978-981-99-0969-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics