Skip to main content

The Effect of Second Metals Towards Physicochemical Properties of Nickel-Based Catalyst Supported on Reduced Graphene Oxide for Hydrogenation of Carbon Dioxide into Methane

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference of New Energy

Abstract

The continuous carbon dioxide, CO2 emission into the atmosphere has caused climate change and other environmental issues. As a part of the effort towards a sustainable future, hydrogenation of CO2 into methane is seen as a useful method to recycle CO2. This Sabatier reaction can be conducted by reacting hydrogen gas, H2 with CO2 under the presence of a Ni-based catalyst which can be enhanced under the presence of support and a second metal. In this work, a nickel-based catalyst supported by reduced graphene oxide nanosheets was synthesized and the influence of the addition of the second metal was studied. Ni/rGO, Ni-Co/rGO, and Ni-Cu/rGO were synthesized using the incipient wetness impregnation method and characterized using X-ray diffraction (XRD), Surface Area and Porosity Analysis (SAP) and H2 temperature-programmed reduction (H2-TPR). The purpose of adding second metals is to determine the effect on their physicochemical properties such as crystallinity, surface area, dispersion, and reducibility of catalyst for hydrogenation of CO2. Fixed loading of the metal was used with 15 wt.% nickel (Ni) catalyst and 5 wt.% second metals (M = Co and Cu). Based on the correlation result studies, adding the second metal shows good physicochemical properties which enhance reducibility and reduce surface area compared to other synthesized catalysts which indicates that it has a strong catalytic activity in methanation. Ni-Cu/rGO recorded the lowest reduction temperature which reflects the highest reducibility due to the smaller crystallite size, lower surface area, and higher dispersion which was suggested by XRD and SAP results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aziz, A. Jalil, S. Triwahyono, A. Ahmad, CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem. 17, 2647–2663 (2015)

    Article  CAS  Google Scholar 

  2. M. Cai, J. Wen, W. Chu, X. Cheng, Z. Li, Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier. J. Nat. Gas Chem. 20, 318–324 (2011)

    Article  CAS  Google Scholar 

  3. F. Ocampo, B. Louis, L. Kiwi-Minsker, A.-C. Roger, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl. Catal. A 392, 36–44 (2011)

    Article  CAS  Google Scholar 

  4. K. Stangeland, D. Kalai, H. Li, Z. Yu, CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia 105, 2022–2027 (2017)

    Article  CAS  Google Scholar 

  5. I. Ud Din, M.S. Shaharun, D. Subbarao, A. Naeem, Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J. Power Sourc. 274, 619–628 (2015)

    Google Scholar 

  6. A. Aljishi, G. Veilleux, J.A.H. Lalinde, J. Kopyscinski, The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation. Appl. Catal. A 549, 263–272 (2018)

    Article  CAS  Google Scholar 

  7. M.A.A. Aziz, A.A. Jalil, S. Triwahyono, M.W.A. Saad, CO2 methanation over Ni-promoted mesostructured silica nanoparticles: influence of Ni loading and water vapor on activity and response surface methodology studies. Chem. Eng. J. 260, 757–764 (2015)

    Article  CAS  Google Scholar 

  8. P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Supported catalysts for CO2 methanation: a review. Catalysts 7 (2017)

    Google Scholar 

  9. X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, Catalytic carbon dioxide hydrogenation to methane: a review of recent studies. J Energy Chem 25, 553–565 (2016)

    Article  Google Scholar 

  10. J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 5, 22759–22776 (2015)

    Article  CAS  Google Scholar 

  11. F. Meshkani, M. Rezaei, Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane. Int. J. Hydrogen Energy 35, 10295–10301 (2010)

    Article  CAS  Google Scholar 

  12. C.-J. Liu, J. Ye, J. Jiang, Y. Pan, Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. Chem. Cat. Chem. 3, 529–541 (2011)

    CAS  Google Scholar 

  13. S. Hwang, U.G. Hong, J. Lee, J.H. Baik, D.J. Koh, H. Lim, I.K. Song, Methanation of carbon dioxide over mesoporous nickel–M–alumina (M=Fe, Zr, Ni, Y, and Mg) xerogel catalysts: effect of second metal. Catal. Lett. 142, 860–868 (2012)

    Article  CAS  Google Scholar 

  14. J.-N. Park, E.W. McFarland, A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J. Catal. 266, 92–97 (2009)

    Article  CAS  Google Scholar 

  15. Y. Li, G. Lu, J. Ma, Highly active and stable nano NiO–MgO catalyst encapsulated by silica with a core–shell structure for CO2 methanation. RSC Adv. 4, 17420–17428 (2014)

    Article  CAS  Google Scholar 

  16. G.B. Sommerbauer, S. Lux, M. Siebenhofer, Metahanation of carbon dioxide with a novel nickel/magnesium oxide catalyst, AIChE Annual MeetingSan Francisco, 13–18 Nov. 2016

    Google Scholar 

  17. N.D. Mohd Ridzuan, M.S. Shaharun, K.M. Lee, I. Ud Din, P. Puspitasari, Influence of nickel loading on reduced graphene oxide-based nickel catalysts for the hydrogenation of carbon dioxide to methane. Catalysts 10, 471 (2020)

    Google Scholar 

  18. Z. Zhang, Y. Tian, L. Zhang, S. Hu, J. Xiang, Y. Wang, L. Xu, Q. Liu, S. Zhang, X. Hu, Impacts of nickel loading on properties, catalytic behaviors of Ni/γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2. Int. J. Hydrogen Energy 44, 9291–9306 (2019)

    Article  CAS  Google Scholar 

  19. J. Tan, J. Wang, Z. Zhang, Z. Ma, L. Wang, Y. Liu, Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation. Appl. Surf. Sci. 481, 1538–1548 (2019)

    Article  CAS  Google Scholar 

  20. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer Science & Business Media, 2012)

    Google Scholar 

  21. D. Ramimoghadam, M.Z.B. Hussein, Y.H. Taufiq-Yap, Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chem. Cent. J. 7, 136 (2013)

    Article  Google Scholar 

  22. W. Gac, W. Zawadzki, G. Słowik, A. Sienkiewicz, A. Kierys, Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater. 272, 79–91 (2018)

    Article  CAS  Google Scholar 

  23. X. Jia, X. Zhang, N. Rui, X. Hu, C.-J. Liu, Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B 244, 159–169 (2019)

    Article  CAS  Google Scholar 

  24. M. Romero-Sáez, A.B. Dongil, N. Benito, R. Espinoza-González, N. Escalona, F. Gracia, CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl. Catal. B 237, 817–825 (2018)

    Article  Google Scholar 

  25. R. Daroughegi, F. Meshkani, M. Rezaei, Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni–Al2O3 catalysts prepared by ultrasound-assisted co-precipitation method. Int. J. Hydrogen Energy 42, 15115–15125 (2017)

    Article  CAS  Google Scholar 

  26. S.V. Moghaddam, M. Rezaei, F. Meshkani, R. Daroughegi, Synthesis of nanocrystalline mesoporous Ni/Al2O3SiO2 catalysts for CO2 methanation reaction. Int. J. Hydrogen Energy 43, 19038–19046 (2018)

    Article  CAS  Google Scholar 

  27. J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang, M. Ding, Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts. Appl. Catal. B 243, 262–272 (2019)

    Article  CAS  Google Scholar 

  28. M. Mihet, M.D. Lazar, Methanation of CO2 on Ni/γ-Al2O3: influence of Pt, Pd or Rh promotion. Catal. Today 306, 294–299 (2018)

    Article  CAS  Google Scholar 

  29. L. Hu, A. Urakawa, Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2. J. CO2 Utilization 25, 323–329 (2018)

    Google Scholar 

Download references

Acknowledgements

The financial assistance from the Foundation of Universiti Teknologi PETRONAS (YUTP-FRG) with the cost center 015LC0-253 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maizatul Shima Shaharun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Institute of Technology PETRONAS Sdn Bhd

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohd Ridzuan, N.D., Shaharun, M.S., Murugan, M., Mohd Jad, N.N.B., Zaine, S.N.A. (2023). The Effect of Second Metals Towards Physicochemical Properties of Nickel-Based Catalyst Supported on Reduced Graphene Oxide for Hydrogenation of Carbon Dioxide into Methane. In: Othman, M.B., Abdul Karim, S.A., Wilfred, C.D., Lee, K.C., Sokkalingam, R. (eds) Proceedings of the 1st International Conference of New Energy . Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0859-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0859-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0858-5

  • Online ISBN: 978-981-99-0859-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics