Skip to main content

Polymeric Paints and Coatings

  • Chapter
  • First Online:
Advanced Functional Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 304 Accesses

Abstract

Polymeric coatings are applied on surfaces of metal, wood, plastics, and other materials to offer protection, decoration, and specific functionality. Polymeric coating technology is one of the old fields; still, it requires further maturity for perfection. The key trends in polymeric coatings include the production of environment friendly coatings, improving the functionality of existing coatings, and the development of smart coatings with multifunctional properties. Polymeric coatings with such properties are not feasible by conventional formulation and synthesis techniques. Therefore, modern technologies such as controllable graft polymerization, free‐radical polymerization, and micro‐emulsion polymerization are employed for these coatings. Moreover, the use of novel modified methods, functional pigments and the construction of nano- and micro-surfaces can produce polymeric coatings with multifunctional and enhanced properties. This chapter emphasizes traditional and advanced functional polymer-based coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modern Coating Technology Wood Coatings A Sustainable Approach to Modern Coating Technology

    Google Scholar 

  2. Das, A., Mahanwar, P.: A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 3(3), 93–101 (2020). https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  3. Diniz, F.B., De Andrade, G.F., Martins, C.R., De Azevedo, W.M.: A comparative study of epoxy and polyurethane based coatings containing polyaniline-DBSA pigments for corrosion protection on mild steel. Prog. Org. Coat. 76(5), 912–916 (2013). https://doi.org/10.1016/j.porgcoat.2013.02.010

    Article  CAS  Google Scholar 

  4. Ates, M.: A review on conducting polymer coatings for corrosion protection. J. Adhes. Sci. Technol. 30(14), 1510–1536 (2016). https://doi.org/10.1080/01694243.2016.1150662

    Article  CAS  Google Scholar 

  5. Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S.M., Ashrafi, A.: A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat. 68(3), 159–164 (2010). https://doi.org/10.1016/j.porgcoat.2010.01.006

    Article  CAS  Google Scholar 

  6. Iscen, A., Forero-Martinez, N.C., Valsson, O., Kremer, K.: Acrylic paints: an atomistic view of polymer structure and effects of environmental pollutants. J. Phys. Chem. B 125(38), 10854–10865 (2021). https://doi.org/10.1021/acs.jpcb.1c05188

    Article  CAS  Google Scholar 

  7. Lestido-Cardama, A., et al.: Characterization of polyester coatings intended for food contact by different analytical techniques and migration testing by LC-MSn. Polymers (Basel) 14(3) (2022). https://doi.org/10.3390/polym14030487

  8. Müller, B., Poth, U.: Coatings Formulation, vol. 36, no. 5 (2007)

    Google Scholar 

  9. Xu, D., Liu, J., Ma, T., Zhao, X., Ma, H., Li, J.: Coupling of sponge fillers and two-zone clarifiers for granular sludge in an integrated oxidation ditch. Environ. Technol. Innov. 26, 102264 (2022). https://doi.org/10.1016/j.eti.2021.102264

    Article  CAS  Google Scholar 

  10. Chundawat, T.S., Verma, N., Vaya, D.: Development in synthesis and coating applications of polyurethane. J. Chil. Chem. Soc. 66(2), 5142–5148 (2021). https://doi.org/10.4067/S0717-97072021000205142

    Article  CAS  Google Scholar 

  11. Makhlouf, A.S.H.: Conventional and advanced coatings for industrial applications: an overview. Nanocoat. Ultra-Thin Film. Technol. Appl. 159–181 (2011). https://doi.org/10.1016/B978-1-84569-812-6.50006-3

  12. Wu, L., Baghdachi, J.: Functional Polymer Coatings: Principles, Methods, and Applications (2015)

    Google Scholar 

  13. Olabintan, A.B., Ahmed, E., Al Abdulgader, H., Saleh, T.A.: Hydrophobic and oleophilic amine-functionalised graphene/polyethylene nanocomposite for oil–water separation. Environ. Technol. Innov. 27, 102391 (2022). https://doi.org/10.1016/j.eti.2022.102391

  14. Fernández-álvarez, M., Velasco, F., Bautista, A., Lobo, F.C.M., Fernandes, E.M., Reis, R.L.: Manufacturing and characterization of coatings from polyamide powders functionalized with nanosilica. Polymers (Basel) 12(10), 1–20 (2020). https://doi.org/10.3390/polym12102298

    Article  CAS  Google Scholar 

  15. Armelin, E., Oliver, R., Liesa, F., Iribarren, J.I., Estrany, F., Alemán, C.: Marine paint fomulations: conducting polymers as anticorrosive additives. Prog. Org. Coat. 59(1), 46–52 (2007). https://doi.org/10.1016/j.porgcoat.2007.01.013

    Article  CAS  Google Scholar 

  16. Felton, L.A.: Mechanisms of polymeric film formation. Int. J. Pharm. 457(2), 423–427 (2013). https://doi.org/10.1016/j.ijpharm.2012.12.027

    Article  CAS  Google Scholar 

  17. Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116(5), 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  18. Mattar, H., et al.: Nitrocellulose: Structure, Synthesis, Characterization, and Applications, vol. 15, no. 3, pp. 1–15 (2020)

    Google Scholar 

  19. Talbert, R.: Paint Technology Handbook (2013)

    Google Scholar 

  20. Karger-Kocsis, J.: Paints, Coatings and Solvents, vol. 51, no. 4 (1994)

    Google Scholar 

  21. Paints, Pigments, and Industrial Coatings

    Google Scholar 

  22. Raju, K.V.S.N., Chattopadhyay, D.K.: Polyester Coatings for Corrosion Protection (2008)

    Google Scholar 

  23. Puhan, S.S., Central, A.E.: Chemistry project no. 6602984 (2014)

    Google Scholar 

  24. Sallis, J.G.M.: Polymer Coatings (1976)

    Google Scholar 

  25. Barroso, G., Li, Q., Bordia, R.K., Motz, G.: Polymeric and ceramic silicon-based coatings—a review. J. Mater. Chem. A 7(5), 1936–1963 (2019). https://doi.org/10.1039/c8ta09054h

    Article  CAS  Google Scholar 

  26. Zhang, W., Liao, L.P., Zhao, Y.: Incorporating microcapsules in smart coatings for corrosion protection of steel. In: Handbook of Smart Coatings for Materials Protection, pp. 287–306 (2014). https://doi.org/10.1533/9780857096883.2.287

  27. Kausar, A.: Polyurethane nanocomposite coatings: state of the art and perspectives. Polym. Int. 67(11), 1470–1477 (2018). https://doi.org/10.1002/pi.5616

    Article  CAS  Google Scholar 

  28. Defeyt, C., Langenbacher, J., Rivenc, R.: Polyurethane coatings used in twentieth century outdoor painted sculptures. Part I: comparative study of various systems by means of ATR-FTIR spectroscopy. Herit. Sci. 5(1), 1–12 (2017). https://doi.org/10.1186/s40494-017-0124-7

    Article  CAS  Google Scholar 

  29. Li, G., Wei, Y., Ren, R.: Preparation of high-temperature-resistance silicone paints. Adv. Mater. Res. 602–604, 1676–1679 (2013). https://doi.org/10.4028/www.scientific.net/AMR.602-604.1676

    Article  CAS  Google Scholar 

  30. Amrutkar, S., More, A., Mestry, S., Mhaske, S.T.: Recent developments in the anti-graffiti coatings: an attentive review. J. Coat. Technol. Res. (2022). https://doi.org/10.1007/s11998-021-00580-z

    Article  Google Scholar 

  31. Selim, M.S., et al.: Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 87, 1–32 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.001

    Article  CAS  Google Scholar 

  32. Liu, Y.: Research on a superhydrophobic coating of highly transparent wear-resistant inorganic/organic silicon composite resin. (2021)

    Google Scholar 

  33. Fiume, M.M., et al.: Safety assessment of nitrocellulose and collodion as used in cosmetics. Int. J. Toxicol. 35(Supplement 1), 50S-59S (2016). https://doi.org/10.1177/1091581816651607

    Article  Google Scholar 

  34. Bubat, A., Scholz, W.: Silicone additives for paints and coatings. Chimia (Aarau) 56(5), 203–209 (2002). https://doi.org/10.2533/000942902777680513

    Article  CAS  Google Scholar 

  35. Zielecka, M., Rabajczyk, A., Cygańczuk, K., Pastuszka, Ł, Jurecki, L.: Silicone resin-based intumescent paints. Materials (Basel) 13(21), 1–18 (2020). https://doi.org/10.3390/ma13214785

    Article  CAS  Google Scholar 

  36. Ramakrishnan, T., et al.: Study of various epoxy-based surface coating techniques for anticorrosion properties. Adv. Mater. Sci. Eng. 2022 (2022). https://doi.org/10.1155/2022/5285919

  37. Xu, Y., Tan, L., Li, Q., Zheng, X., Liu, W.: Sublethal concentrations of heavy metals Cu2+ and Zn2+ can induce the emergence of bacterial multidrug resistance. Environ. Technol. Innov. 102379 (2022). https://doi.org/10.1016/j.eti.2022.102379

  38. Lomelí-Rodríguez, M., Corpas-Martínez, J.R., Willis, S., Mulholland, R., Lopez-Sanchez, J.A.: Synthesis and characterization of renewable polyester coil coatings from biomass-derived isosorbide, FDCA, 1,5-pentanediol, succinic acid, and 1,3-propanediol. Polymers (Basel) 10(6), 1–19 (2018). https://doi.org/10.3390/polym10060600

    Article  CAS  Google Scholar 

  39. Gottsegen, M.D.: The Painter’s Handbook, pp. 199–236. (2006)

    Google Scholar 

  40. Yanping, Y.: The development of polyurethane. Mater. Sci. Mater. Rev. 1(1), 1–8 (2018). https://doi.org/10.18063/msmr.v1i1.507

    Article  Google Scholar 

  41. Du, Z., Wen, S., Wang, J., Yin, C., Yu, D., Luo, J.: The Review of Powder Coatings, pp. 54–59 (2016)

    Google Scholar 

  42. Koolivand, A., et al.: The effect of petroleum hydrocarbons concentration on competition between oil-degrading bacteria and indigenous compost microorganisms in petroleum sludge bioremediation. Environ. Technol. Innov. 26, 102319 (2022). https://doi.org/10.1016/j.eti.2022.102319

    Article  CAS  Google Scholar 

  43. Adamu, A.A., Muhamad Sarih, N., Gan, S.N.: Thermal and anticorrosion properties of polyurethane coatings derived from recycled polyethylene terephthalate and palmolein-based polyols. R. Soc. Open Sci. 8(4) (2021). https://doi.org/10.1098/rsos.201087

  44. Tile-adhesives.pdf

    Google Scholar 

  45. Lee, Y.J., Lei, Z.: Wastewater treatment using microalgal-bacterial aggregate process at zero-aeration scenario: Most recent research focuses and perspectives. Bioresour. Technol. Reports, vol. 17, no. December 2021, p. 100943 (2022). https://doi.org/10.1016/j.biteb.2021.100943

  46. Zafar, S.: Waterborne epoxy based coating materials. Am. Sci. Res. J. Eng. Technol. Sci. 50(1), 133–154 (2018)

    Google Scholar 

  47. Grubbs, R.B.: What is a Polymer ?, vol. 9000, pp. 1–18 (2014)

    Google Scholar 

  48. Water-Based Paint Formulations, vol. 4. N. Publications

    Google Scholar 

  49. Lan, P., Nunez, E.E., Polycarpou, A.A.: Advanced polymeric coatings and their applications: Green tribology. Encycl. Renew. Sustain. Mater. 345–358, (2020). https://doi.org/10.1016/b978-0-12-803581-8.11466-3

  50. dePolo, G., Walton, M., Keune, K., Shull, K.R.: After the paint has dried: a review of testing techniques for studying the mechanical properties of artists’ paint. Herit. Sci. 9(1), 1–24 (2021). https://doi.org/10.1186/s40494-021-00529-w

  51. Emery, J., Stone, G.: Chapter 1: Introduction and literature review. Libr. Technol. Rep. 49(2), 5–9 (2013)

    Google Scholar 

  52. Iñiguez‐moreno, M., Ragazzo‐sánchez, J.A., Calderón‐santoyo, M.: An extensive review of natural polymers used as coatings for postharvest shelf‐life extension: trends and challenges. Polymers (Basel) 13(19) (2021). https://doi.org/10.3390/polym13193271

  53. Pradhan, S., Pandey, P., Mohanty, S., Nayak, S.K.: Insight on the chemistry of epoxy and its curing for coating applications: a detailed investigation and future perspectives. Polym. Plast. Technol. Eng. 55(8), 862–877 (2016). https://doi.org/10.1080/03602559.2015.1103269

    Article  CAS  Google Scholar 

  54. Rangel, E.C., et al.: Cell adhesion to plasma-coated PVC. Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/132308

  55. Bauer, P., & Buettner, A.: Characterization of odorous and potentially harmful substances in artists’ acrylic paint. Front. Public Heal. 6, 1–11 (2018). https://doi.org/10.3389/fpubh.2018.00350

  56. Kumarasinghe, K.G.U.R. et al.: One-pot reducing agent-free synthesis of silver nanoparticles/nitrocellulose composite surface coating with antimicrobial and antibiofilm activities. Biomed Res. Int. 2021 (2021). https://doi.org/10.1155/2021/6666642

  57. Lambourne R., Strivens, T.A.: Paint and Surface Coatings Theory and Practice, p. 800 (1999)

    Google Scholar 

  58. Halladay, J.R.: Elastomeric coatings. KGK Kautschuk Gummi Kunststoffe 60(5), 257–260 (2007). https://doi.org/10.1016/0042-207x(64)90583-4

    Article  CAS  Google Scholar 

  59. Bandeira, R.M., van Drunen, J., TremiliosiFilho, G., dos Santos, J.R., de Matos, J.M.E.: Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel. Prog. Org. Coat. 106, 50–59 (2017). https://doi.org/10.1016/j.porgcoat.2017.02.009

    Article  CAS  Google Scholar 

  60. Krishnaveni, D., Kannan, P., Senthilkumar, A.N., Raja, K.: Safe disposal of phosphate for eutrophication control by Redgram stalk biochar with subsequent power generation. Environ. Technol. Innov. 27, 102389 (2022). https://doi.org/10.1016/j.eti.2022.102389

    Article  CAS  Google Scholar 

  61. Bergamasco, S., Tamantini, S., Zikeli, F., Vinciguerra, V., Mugnozza, G.S., Romagnoli, M.: Synthesis and characterizations of eco-friendly organosolv lignin-based polyurethane coating films for the coating industry. Polymers (Basel) 14(3) (2022). https://doi.org/10.3390/polym14030416

  62. Moon, J.I., Lee, Y.H., Kim, H.J., Noh, S.M., Nam, J.H.: Synthesis of elastomeric polyester and physical properties of polyester coating for automotive pre-primed system. Prog. Org. Coat. 75(1–2), 65–71 (2012). https://doi.org/10.1016/j.porgcoat.2012.03.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ahmad Rehan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehan, Z.A., Usman, A. (2023). Polymeric Paints and Coatings. In: Shaker, K., Hafeez, A. (eds) Advanced Functional Polymers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0787-8_4

Download citation

Publish with us

Policies and ethics