Skip to main content

Modern Characterization Techniques for Functional Polymers

  • Chapter
  • First Online:
Advanced Functional Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 266 Accesses

Abstract

Polymers and their composites are preferred over conventional materials like steel, copper, and aluminum due to their high corrosion resistance, flexibility, ease of processability, and lightweight. Various analytical techniques have been used for the characterization of polymers and their composites as a function of either time or temperature. Morphological structure, molecular weight, analysis of monomer, solvent residue, the composition of the copolymer, and interfacial interfaces of polymeric systems are some of the advanced properties of polymers and composites. The current chapter covers some of the advanced characterizations techniques like Dynamic Mechanical Analysis (DMA), Thermomechanical Analysis (TMA), Atomic Force Microscopy (AFM), 4-Probe technique, Inverse Gas Chromatography (IGC), and Gel Permeation Chromatography (GPC). The above-mentioned techniques are used to determine various properties of advanced polymers like their response to heat, stress, electrical resistance, molecular weight, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Lieshout, M.H.P.M., Janssen, H.G., Cramers, C.A., Hetem, M.J.J., Schalk, H.J.P.: Characterization of polymers by multi-step thermal desorption/programmed pyrolysis gas chromatography using a high temperature PTV injector. HRC J. High Resolut. Chromatogr. 19, 193–199 (1996). https://doi.org/10.1002/jhrc.1240190404

  2. Liang, J.Z.: Dynamic mechanical properties and characterization of inorganic particulate-filled polymer composites. J. Thermoplast. Compos. Mater. 24, 207–220 (2011). https://doi.org/10.1177/0892705710387254

  3. Bashir, M.A., Jakobsen, M.G., Farstad, V.B.: The effect of extender particle size on the glass transition temperature of model epoxy coatings. Polymers (Basel) 12 (2020). https://doi.org/10.3390/polym12010196

  4. Tsagaropoulos, G., Eisenberg, A.: Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities Differ. Random Lonomers, Macromol. 28, 6067–6077 (1995). https://doi.org/10.1021/ma00122a011

  5. Bashir, M.A.: Use of Dynamic Mechanical Analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids. 2, 108–120 (2021). https://doi.org/10.3390/solids2010006

  6. Mayes, A.M.: Softer at the boundary taking lessons from the book. Nature 4, 651–652 (2005)

    Google Scholar 

  7. Starr, F.W., Schrøder, T.B., Glotzer, S.C.: Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Phys. Rev. E Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 64(5) (2001). https://doi.org/10.1103/PhysRevE.64.021802

  8. Gaisford, S., Kett, V., Haines, P.: Principles of thermal analysis and calorimetry. Roy. Soc. Chem. (2019)

    Google Scholar 

  9. James, J.: Chapter 7—thermomechanical analysis and its applications. In: Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K. (eds.) Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, pp. 159–171. Elsevier (2017). https://doi.org/10.1016/B978-0-323-46139-9.00007-4

  10. Corcione, C.E., Frigione, M.: Characterization of nanocomposites by thermal analysis. Materials (Basel). 5, 2960–2980 (2012). https://doi.org/10.3390/ma5122960

  11. Wu, Q., Chi, K., Wu, Y., Lee, S.: Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater. Des. 60, 334–342 (2014). https://doi.org/10.1016/j.matdes.2014.04.010

  12. Zhao, Y.-H., Wu, Z.-K., Bai, S.-L.: Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Compos. Part A Appl. Sci. Manuf. 72, 200–206 (2015). https://doi.org/10.1016/j.compositesa.2015.02.011

  13. Saba, N., Jawaid, M.: A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng. Chem. 67, 1–11 (2018). https://doi.org/10.1016/j.jiec.2018.06.018

  14. Balzano, L., Kukalyekar, N., Rastogi, S., Peters, G.W.M., Chadwick, J.C.: Crystallization and dissolution of flow-induced precursors. Phys. Rev. Lett. 100, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.100.048302

  15. Hsiao, B.S., Yang, L., Somani, R.H., Avila-Orta, C.A., Zhu, L.: Unexpected Shish-Kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 94, 1–4 (2005). https://doi.org/10.1103/PhysRevLett.94.117802

  16. Klinov, D., Magonov, S.: True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes. Appl. Phys. Lett. 84, 2697–2699 (2004). https://doi.org/10.1063/1.1697629

  17. Yang, X., Loos, J.: Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40, 1353–1362 (2007). https://doi.org/10.1021/ma0618732

  18. Garcia, R., Proksch, R.: Nanomechanical mapping of soft matter by bimodal force microscopy. Eur. Polym. J. 49, 1897–1906 (2013). https://doi.org/10.1016/j.eurpolymj.2013.03.037

  19. Hobbs, J.K., Farrance, O.E., Kailas, L.: How atomic force microscopy has contributed to our understanding of polymer crystallization. Polymer (Guildf). 50, 4281–4292 (2009). https://doi.org/10.1016/j.polymer.2009.06.021

  20. Yamanaka, S., Kubo, A., Inumaru, K., Komaguchi, K., Kini, N.S., Inoue, T., Irifune, T.: Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 96, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.96.076602

  21. Vas, J.V., Thomas, M.J.: Electromagnetic shielding effectiveness of multiwalled carbon nanotube filled silicone rubber. In: INCEMIC 2015—13th International Conference on Electromagnet Interference and Compatibility Proceeding, pp. 55–59 (2017). https://doi.org/10.1109/INCEMIC.2015.8055846

  22. Voelkel, A., Grzeskowiak, T.: The use of solubility parameters in characterization of titanate modified silica gel by inverse gas chromatography. Chromatographia 51, 608–614 (2000). https://doi.org/10.1007/BF02490820

  23. Mohammadi-Jam, S., Waters, K.E.: Inverse gas chromatography applications: a review. Adv. Colloid Interface Sci. 212, 21–44 (2014). https://doi.org/10.1016/j.cis.2014.07.002

    Article  CAS  Google Scholar 

  24. Voelkel, A.: Inverse gas chromatography in characterization of surface. Chemom. Intell. Lab. Syst. 72, 205–207 (2004). https://doi.org/10.1016/j.chemolab.2004.01.016

  25. Suarez, I., Caballero, M.J., Coto, B.: A fast and reliable procedure to determine the copolymer composition by GPC-IR: application to ethylene/propylene copolymers and comparison with 13C NMR. Polym. Eng. Sci. 51, 317–322 (2011)

    Google Scholar 

  26. Suárez, I., Caballero, M.J., Coto, B.: Composition effects on ethylene/propylene copolymers studied by GPC-MALS and GPC-IR. Eur. Polym. J. 46, 42–49 (2010). https://doi.org/10.1016/j.eurpolymj.2009.09.005

  27. Suárez, I., Caballero, M.J., Coto, B.: Characterization of ethylene/propylene copolymers by means of a GPC-4D technique, Eur. Polym. J. 47, 171–178 (2011). https://doi.org/10.1016/j.eurpolymj.2010.11.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Fayzan Shakir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fayzan Shakir, H.M., Anum, R. (2023). Modern Characterization Techniques for Functional Polymers. In: Shaker, K., Hafeez, A. (eds) Advanced Functional Polymers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0787-8_10

Download citation

Publish with us

Policies and ethics