Skip to main content

Part of the book series: Indoor Environment and Sustainable Building ((IESB))

  • 384 Accesses

Abstract

Personal thermal management is a promising solution to improve human body thermal comfort and reduce building energy consumption. Personal management materials (PTMMs) with zero or near-zero power supply are being developed to effectively regulate heat exchange between human body and the ambient. This chapter provides an in-depth overview of the recent progress on the various advanced PTMMs for thermal management under various ambient conditions, including cooling fabrics, heating fabrics, and due-modes fabrics. The functioning principle, engineering methods as well as the cooling/heating effects of the various PTMMs were discussed. Finally, an outlook discussing the development and research of PTMMs is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465

    Article  Google Scholar 

  2. Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742

    Article  Google Scholar 

  3. Watanabe K, Rijal HB, Nakaya T (2013) Investigation of clothing insulation and thermal comfort in Japanese houses. PLEA, Munich, Germany

    Google Scholar 

  4. Rupp RF, Kazanci OB, Toftum J (2021) Investigating current trends in clothing insulation using a global thermal comfort database. Energ Build 252:111431

    Article  Google Scholar 

  5. Kong M, Dong B, Zhang R, O’Neill Z (2022) HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Appl Energy 306:117987

    Article  Google Scholar 

  6. Solano JC, Caamano-Martin E, Olivieri L, Almeida-Galarraga D (2021) HVAC systems and thermal comfort in buildings climate control: an experimental case study. Energ Rep 7:269–277

    Google Scholar 

  7. ASHRAE (2017) ANSI/ASHRAE Standard 55–2017: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers, Technology Park, GA

    Google Scholar 

  8. Rawal R, Schweiker M, Kazanci OB, Vardhan V, Jin Q, Duanmu L (2020) Personal comfort systems: a review on comfort, energy, and economics. Energ Build 214:109858

    Article  Google Scholar 

  9. Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energ Build 256:111747

    Article  Google Scholar 

  10. Yang B, Wu M, Li Z, Yao H, Wang F (2022) Thermal comfort and energy savings of personal comfort systems in low temperature office: a field study. Energy Build 270:112276

    Article  Google Scholar 

  11. Hu J, Irfan Iqbal M, Sun F (2020) Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv Func Mater 30(51):2005033

    Article  Google Scholar 

  12. Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921

    Article  Google Scholar 

  13. Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Lin Y, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595

    Article  Google Scholar 

  14. Sajjad U, Hamid K, Rehman TU, Sultan M, Abbas N, Ali HM, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management—a review on strategies, progress, and prospects. Int Commun Heat Mass Transfer 130:105739

    Article  Google Scholar 

  15. Teunissen L, Janssen E, Schootstra J, Plaude L, Jansen K (2021) Evaluation of phase change materials for personal cooling applications. Cloth Text Res J. https://doi.org/10.1177/0887302X211053007

    Article  Google Scholar 

  16. Lan X, Wang Y, Peng J, Si Y, Ren J, Ding B, Li B (2021) Designing heat transfer pathways for advanced thermoregulatory textiles. Mater Today Phys 17:100342

    Article  Google Scholar 

  17. Zhu FL, Feng QQ (2021) Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int J Therm Sci 165:106899

    Article  Google Scholar 

  18. Luo H, Zhu Y, Li Q, Xu Z, Hong Y, Ghosh P, Kaur S, Wu M, Yang C, Qiu M (2020) Outdoor personal heating and cooling by a Janus textile. Res Sq. https://doi.org/10.21203/rs.3.rs-118029/v1

  19. Nilsson JÃ…, Molokwu MN, Olsson O (2016) Body temperature regulation in hot environments. PLoS ONE 11(8):e0161481

    Article  Google Scholar 

  20. Cui Y, Gao S, Zhang R, Cheng L, Yu J (2020) Study on the moisture absorption and thermal properties of hygroscopic exothermic fibers and related interactions with water molecules. Polymers 12(1):98

    Article  Google Scholar 

  21. Karthik T, Senthilkumar P, Murugan R (2018) Analysis of comfort and moisture management properties of polyester/milkweed blended plated knitted fabrics for active wear applications. J Ind Text 47(5):897–920

    Article  Google Scholar 

  22. Suganthi T, Senthilkumar P (2018) Moisture-management properties of bi-layer knitted fabrics for sportswear. J Ind Text 47(7):1447–1463

    Article  Google Scholar 

  23. Yilma KT, Limeneh DY (2021) Review on moisture management finish: mechanism and evaluation. J Nat Fibers 19(7):1–9

    Google Scholar 

  24. Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med 33(13):941–947

    Article  Google Scholar 

  25. Söz CK, Trosien S, Biesalski M (2020) Janus interface materials: a critical review and comparative study. ACS Mater Lett 2(4):336–357

    Article  Google Scholar 

  26. Tang S, Pi H, Zhang Y, Wu J, Zhang X (2019) Novel Janus fibrous membranes with enhanced directional water vapor transmission. Appl Sci 9(16):3302

    Article  Google Scholar 

  27. Lim HS, Park SH, Koo SH, Kwark YJ, Thomas EL, Jeong Y, Cho JH (2010) Superamphiphilic Janus fabric. Langmuir 26(24):19159–19162

    Article  Google Scholar 

  28. Xiao YQ, Kan CW (2022) Review on the development and application of directional water transport textile arterials. Coatings 12(3):301

    Article  Google Scholar 

  29. Hu R, Wang N, Hou L, Liu J, Cui Z, Zhang C, Zhao Y (2022) Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl Mater Interfaces 14(7):9833–9843

    Article  Google Scholar 

  30. You JB, Yoo Y, Oh MS, Im SG (2014) Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl Mater Interfaces 6(6):4005–4010

    Article  Google Scholar 

  31. Guan X, Wang X, Huang Y, Zhao L, Sun X, Owens H, Lu JR, Liu X (2020) Smart textiles with Janus wetting and wicking properties fabricated by graphene oxide coatings. Adv Mater Interfaces 8(2):2001427

    Article  Google Scholar 

  32. Zhou H, Guo Z (2019) Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications. J Mater Chem A 7(21):12921–12950

    Article  Google Scholar 

  33. Miao D, Huang Z, Wang XF, Yu JY, Ding B (2018) Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14:e1801527

    Article  Google Scholar 

  34. Wu C, Faruk O, Jin Q, Wang G, Wu J, Qi D (2020) Preparation of Janus fabric by PVDF electrospinning technology and its unidirectional water/moisture transportation performance. J Texte Sci Technol 6(3):144–152

    Article  Google Scholar 

  35. Zhao J, Xu Z, Liu S, Zhang T, Huang L (2021) Tailoring unidirectional water-penetration Janus fabric with surface electrospun deposition. Macromol Mater Eng 306(4):2000578

    Article  Google Scholar 

  36. Li D, Xu K, Zhang Y (2022) A review on research progress in plasma-controlled superwetting surface structure and properties. Polymers 14(18):3759

    Article  Google Scholar 

  37. Li H, Li Y, Wu J, Jia X, Yang J, Shao D, Feng L, Wang S, Song H (2022) Bio-inspired hollow carbon microtubes for multifunctional photothermal protective coatings. ACS Appl Mater Interfaces 14(25):29302–29314

    Article  Google Scholar 

  38. Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548

    Article  Google Scholar 

  39. Li X, Yang Y, Quan Z, Wang L, Ji D, Li F, Qin X, Yu J, Ramakrishna S (2022) Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem Eng J 430:133093

    Article  Google Scholar 

  40. Xu B, Ding Y, Li A (2022) Wax direct-writing of monolayered Janus fabrics for personal moisture management. Adv Mater Interfaces 9(15):2200438

    Article  Google Scholar 

  41. Yang S, Zhu Z, Wu Z, Wu J, Yin K (2020) Femtosecond laser rapid fabrication of Janus sweat-permeable fabric for personal cooling. Appl Phys Lett 117(21):213701

    Article  Google Scholar 

  42. Zou C, Lao L, Chen Q, Fan J, Shou D (2021) Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energ Build 248:111203

    Article  Google Scholar 

  43. Fu M, Weng W, Chen W, Luo N (2016) Review on modeling heat transfer and thermoregulatory responses in human body. J Therm Biol 62:189–200

    Article  Google Scholar 

  44. Gagge AP, Gonzalez RR (2010) Mechanisms of heat exchange: biophysics and physiology. Compr Physiol 45–84

    Google Scholar 

  45. Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2(6):769–778

    Article  Google Scholar 

  46. Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu CL, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y (2017) A dual-mode textile for human body radiative heating and cooling. Sci Adv 3(11):e1700895

    Article  Google Scholar 

  47. Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1(2):105–112

    Article  Google Scholar 

  48. Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y (2019) Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6):1478–1486

    Article  Google Scholar 

  49. Liu R, Wang X, Yu J, Wang Y, Zhu J, Hu Z (2018) A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol Mater Eng 303(3):1700456

    Article  Google Scholar 

  50. Song YN, Ma RJ, Xu L, Huang HD, Yan DX, Xu JZ, Zhong GJ, Lei J, Li ZM (2018) Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl Mater Interfaces 10(48):41637–41644

    Article  Google Scholar 

  51. Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13(4):1457–1461

    Article  Google Scholar 

  52. Zhao B, Hu M, Ao X, Chen N, Pei G (2019) Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl Energy 236:489–513

    Article  Google Scholar 

  53. Wei W, Zhu Y, Li Q, Cheng Z, Yao Y, Zhao Q, Zhang P, Liu X, Chen Z, Xu F, Gao Y (2020) An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells 211:110525

    Article  Google Scholar 

  54. Gu B, Liang K, Zhang T, Qiu F, Yang D, Chen M (2020) Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27(14):8471–8483

    Article  Google Scholar 

  55. Song YN, Lei MQ, Deng LF, Lei J, Li ZM (2020) Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl Polym Mater 2(11):4379–4386

    Article  Google Scholar 

  56. Song YN, Lei MQ, Lei J, Li ZM (2020) A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv Mater Technol 5(7):2000287

    Article  Google Scholar 

  57. Song YN, Lei MQ, Lei J, Li ZM (2020) Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater Today Energy 18:100504

    Article  Google Scholar 

  58. Kim G, Park K, Hwang K, Choi C, Zheng Z, Seydel R, Coza A, Jin S (2021) Black textile with bottom metallized surface having enhanced radiative cooling under solar irradiation. Nano Energy 82:105715

    Article  Google Scholar 

  59. Cai L, Song AY, Li W et al (2018) Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater 30(35):1802152

    Article  Google Scholar 

  60. Iqbal MI, Lin K, Sun F, Chen S, Pan A, Lee HH, Kan CW, Lin CSK, Tso CY (2022) Radiative cooling nanofabric for personal thermal management. ACS Appl Mater Interfaces 14(20):23577–23587

    Article  Google Scholar 

  61. Liu Y, Zhang H, Zhang Y, Liang C, An Q (2022) Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng 240:109988

    Article  Google Scholar 

  62. Panwar K, Jassal M, Agrawal AK (2017) TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf Coat Technol 309:897–903

    Article  Google Scholar 

  63. Zeng S, Pian S, Su M et al (2021) Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555):692–696

    Article  Google Scholar 

  64. Miao D, Cheng N, Wang X, Yu J, Ding B (2022) Sandwich-structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chem Eng J 450:138012

    Article  Google Scholar 

  65. Sivarenjini TM, Panbude A, Sathiyamoorthy S, Kumar R, Maaza M, Jayabal K, Veluswamy P (2021) Design and optimization of flexible thermoelectric coolers for wearable applications. ECS J Solid State Sci Technol 10(8):081006

    Article  Google Scholar 

  66. Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595

    Article  Google Scholar 

  67. Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11(11):11513–11520

    Article  Google Scholar 

  68. Yu X, Li Y, Wang X, Si Y, Yu J, Ding B (2020) Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl Mater Interfaces 12(28):32078–32089

    Article  Google Scholar 

  69. Abbas A, Zhao Y, Wang X, Lin T (2013) Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J Text Inst 104(8):798–807

    Article  Google Scholar 

  70. Guo Y, Dun C, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645

    Article  Google Scholar 

  71. Peng Y, Li W, Liu B et al (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12(1):1–12

    Article  Google Scholar 

  72. Ding J, Zhao W, Jin W, Di CA, Zhu D (2021) Advanced thermoelectric materials for flexible cooling application. Adv Func Mater 31(20):2010695

    Article  Google Scholar 

  73. Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectrics for potential building energy saving. Appl Energy 218:282–291

    Article  Google Scholar 

  74. Shoeibi S, Kargarsharifabad H, Sadi M, Arabkoohsar A, Mirjalily SAA (2022) A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustainable Energy Technol Assess 52:102105

    Article  Google Scholar 

  75. Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L (2017) High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41:35–42

    Article  Google Scholar 

  76. Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536

    Google Scholar 

  77. Gupta D, Srivastava A, Kale S (2013) Thermal properties of single and double layer fabric assemblies. Indian J Fibre Text Res 38:387–394

    Google Scholar 

  78. Hayashi K (1984) Thermal conductivity of ceramic fibrous insulators at high temperatures. Int J Thermophys 5(2):229–238

    Article  Google Scholar 

  79. Fu Z, Corker J, Papathanasiou T, Wang Y, Zhou Y, Madyan OA, Liao F, Fan M (2022) Critical review on the thermal conductivity modelling of silica aerogel composites. J Build Eng 57:104814

    Article  Google Scholar 

  80. Liu Q, Yan K, Chen J, Xia M, Li M, Liu K, Wang D, Wu C, Xie Y (2021) Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate 2(2):e30

    Google Scholar 

  81. Tafreshi OA, Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2022) A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 23:100736

    Article  Google Scholar 

  82. Anderson DM, Fessler JR, Pooley MA, Seidel S, Hamblin MR, Beckham HW, Brennan JF (2017) Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics. Biomed Opt Express 8(3):1698–1711

    Article  Google Scholar 

  83. Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371

    Article  Google Scholar 

  84. Hayes SG, Venkatraman P (2016) Materials and technology for sportswear and performance apparel. CRC Press, Boca Raton, FL

    Google Scholar 

  85. Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 8(1):1–8

    Article  Google Scholar 

  86. Cheng Y, Zhang H, Wang R, Wang X, Zhai H, Wang T, Jin Q, Sun J (2016) Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl Mater Interfaces 8(48):32925–32933

    Article  Google Scholar 

  87. Wang Z, Wan Y, Zheng X, Yang H, Wang P, Li C (2021) Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly. J Clean Prod 298:126760

    Article  Google Scholar 

  88. Rodriguez-Navarro C, di Lorenzo F, Elert K (2018) Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos Chem Phys 18(13):10089–10122

    Article  Google Scholar 

  89. Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater 30(14):1706807

    Article  Google Scholar 

  90. Leblanc G, Francis CM, Soffer R, Kalacska M, De Gea J (2016) Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens 8(4):273

    Article  Google Scholar 

  91. Metwally S, Comesaña SM, Zarzyka M, Szewczyk PK, Karbowniczek JE, Stachewicz U (2019) Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomater 91:270–283

    Article  Google Scholar 

  92. Shao Z, Wang Y, Bai H (2020) A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem Eng J 397:125441

    Article  Google Scholar 

  93. Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13(7):8851–8862

    Article  Google Scholar 

  94. Yue X, He M, Zhang T, Yang D, Qiu F (2020) Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl Mater Interfaces 12(10):12285–12293

    Article  Google Scholar 

  95. Wang H, Quan X, Yin L, Jin X, Pan Y, Wu C, Huang H, Hong C, Zhang X (2022) Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection. Compos A Appl Sci Manuf 159:107022

    Article  Google Scholar 

  96. Wang J, Zhang T, Shen Y, Yang B, Lv J, Zheng Y, Wang Y (2022) Polyethylene glycol/nanofibrous Kevlar aerogel composite: fabrication, confinement effect, thermal energy storage and insulation performance. Mater Today Commun 32:104011

    Article  Google Scholar 

  97. Li C, Chen Z, Dong W et al (2021) A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517

    Article  Google Scholar 

  98. Nuckols ML, Chao JC, Swiergosz MJ (2005) Manned evaluation of a prototype composite cold water diving garment using liquids and superinsulation aerogel materials. Rubicon Research Repository, Panama City, FL

    Google Scholar 

  99. Trevino LA, Orndoff ES, Tang HH, Gould GL, Trifu R (2002) Aerogel-based insulation for advanced space suit. SAE Technical Paper, San Antonio

    Google Scholar 

  100. Su W, Lu Y (2020) Development and performance evaluation of aerogel-based cold protective clothing. J Silk 57(9):58–62 (in Chinese)

    Google Scholar 

  101. Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45(4):611–625

    Article  Google Scholar 

  102. Qiu S, Jia H, Jiang SX (2021) Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering. Mater Lett 300:130217

    Article  Google Scholar 

  103. Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L (2019) Designing textile architectures for high energy-efficiency human body sweat-and cooling-management. Adv Fiber Mater 1(1):61–70

    Article  Google Scholar 

  104. Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y (2019) Dynamic gating of infrared radiation in a textile. Science 363(6427):619–623

    Article  Google Scholar 

  105. Wang W, Yao LN, Cheng CY et al (2017) Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci Adv 5(3):e1601984

    Article  Google Scholar 

  106. Zhong Y, Zhang F, Wang M, Gardner CJ, Kim G, Liu Y, Leng L, Jin S, Chen R (2017) Reversible humidity sensitive clothing for personal thermoregulation. Sci Rep 7(1):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfang Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, W., Lu, W. (2023). Personal Thermal Management Materials (PTMMs). In: Wang, F., Yang, B., Deng, Q., Luo, M. (eds) Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality. Indoor Environment and Sustainable Building. Springer, Singapore. https://doi.org/10.1007/978-981-99-0718-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0718-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0717-5

  • Online ISBN: 978-981-99-0718-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics