Skip to main content

Electromagnetic Thermal Coupled Analysis of a Multiple Three-Phase Fractional Slot Concentrated Winding Fault-Tolerant Motor

  • Conference paper
  • First Online:
Proceedings of the 3rd International Symposium on New Energy and Electrical Technology (ISNEET 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1017))

Included in the following conference series:

  • 656 Accesses

Abstract

This paper proposes a multiple three-phase Fractional Slot Concentrated Winding (FSCW) Permanent-Magnet Synchronous Reluctance Motor (PM-SynRM) with high reliability for the aerospace field, it controls three winding modules through three sets of independent inverters. The machine torque, winding currents and temperature rise of the motor were evaluated by finite element simulation under healthy operation, open-circuit fault and short-circuit fault, and a 5kW prototype was designed and built for experiments. The experimental results verify the correctness of the simulation and the excellent fault tolerance of the motor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, T.J.E., Hutton, A., Cossar, C., et al.: Design of a synchronous reluctance motor drive. IEEE Trans. Energy Convers. 27(4), 741–745 (1991)

    Google Scholar 

  2. EL-Refaie, A.M.: Fault-tolerant PM machines: a review. In: 2009 IEEE International Electric Machines and Drives Conference, pp. 1700–1709 (2009). https://doi.org/10.1109/IEMDC.2009.5075432

  3. Patel, V.I., Wang, J., Nugraha, D.T., Vuletic, R., Tousen, J.: Enhanced availabilityofdrivetrainthroughnovelmultiphasepermanent-magnetma-chine drive. IEEE Trans. Ind. Electron. 63(1), 469–480 (2016)

    Article  Google Scholar 

  4. Cao, W., Mecrow, B.C., Atkinson, G.J., Bennett, J.W., Atkinson, D.J.: Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Trans. Ind. Electron. 59(9), 3523–3531 (2012)

    Article  Google Scholar 

  5. Bolognani, S., Zigliotto, M., Zordan, M.: Experimental fault-tolerant control of a PMSM drive. In: IECON 1998. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200), vol. 1, pp. 492–497 (1998). https://doi.org/10.1109/IECON.1998.724292

  6. Gopalarathnam, T., Toliyat, H.A., Moreira, J.C.: Multi-phase fault-tolerant brushless DC motor drives. In: Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), vol. 3, pp. 1683–1688 (2000). https://doi.org/10.1109/IAS.2000.882107

  7. Wang, B., Wang, J., Griffo, A., Hua, W.: Effective turn fault mitigation by creating zero sequence current path for a triple redundant 3 × 3-phase PMA SynRM. IEEE Trans. Power Electron. 34(11), 11080–11089 (2019). https://doi.org/10.1109/TPEL.2019.2900441

    Article  Google Scholar 

  8. Wang, B., Wang, J., Griffo, A., Shi, Y.: Investigation into fault-tolerant capability of a triple redundant PMA SynRM drive. IEEE Trans. Power Electron. 34(2), 1611–1621 (2019). https://doi.org/10.1109/TPEL.2018.2834539

    Article  Google Scholar 

  9. Wang, P., Zheng, P., Wu, F., Zhang, J., Li, T.: Research on dual-plane vector control of fivephase fault-tolerant permanent magnet machine. In: 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1–5 (2014). https://doi.org/10.1109/ITEC-AP.2014.6941184

  10. Parsa, L., Toliyat, H.A.: Fault-tolerant five-phase permanent magnet motor drives. In: Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting, vol. 2, pp. 1048–1054 (2004). https://doi.org/10.1109/IAS.2004.1348542

  11. Wang, B., Wang, J., Sen, B., Griffo, A., Sun, Z., Chong, E.: A fault-tolerant machine drive based on permanent magnet-assisted synchronous reluctance machine. IEEE Trans. Ind. Appl. 54(2), 1349–1359 (2018). https://doi.org/10.1109/TIA.2017.2781201

    Article  Google Scholar 

  12. Chen, X., Wang, J., Patel, V.I., Lazari, P.: A Nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications. IEEE Trans. Energy Convers. 31(3), 860–871 (2016). https://doi.org/10.1109/TEC.2016.2538321

    Article  Google Scholar 

  13. Shi, Y., Wang, J., Wang, B.: Electromagnetic-thermal coupled simulation under various fault conditions of a triple redundant 9-phase PMASynRM. IEEE Trans. Ind. Appl. 56(1), 128–137 (2020). https://doi.org/10.1109/TIA.2019.2946116

    Article  Google Scholar 

  14. Shi, Y., Wang, J., Hu, R., Wang, B.: Electromagnetic and thermal behavior of a triple redundant 9-phase PMASynRM with insulation deterioration fault. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3053–3060 (2019). https://doi.org/10.1109/ECCE.2019.8912582

  15. Wang, B., Wang, J., Griffo, A., Sen, B.: Experimental assessments of a triple redundant nine-phase fault-tolerant PMA SynRM drive. IEEE Trans. Industr. Electron. 66(1), 772–783 (2019). https://doi.org/10.1109/TIE.2017.2784368

    Article  Google Scholar 

  16. Xiaowei, W., Tiecai, L.: A 3-D electromagnetic thermal coupled analysis of permanent magnet brushless DC motor. In: 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 15–18 (2011). https://doi.org/10.1109/IMCCC.2011.13

  17. Simpson, N., Wrobel, R., Mellor, P.H.: Estimation of equivalent thermal parameters of impregnated electrical windings. IEEE Trans. Ind. Appl. 49(6), 2505–2515 (2013). https://doi.org/10.1109/TIA.2013.2263271

    Article  Google Scholar 

  18. Jiang, T., Liu, G., Zhou, H.: Simplified thermal modeling of fault-tolerant permanent-magnet motor by using lumped parameter network. In: 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1–4 (2014). https://doi.org/10.1109/ITEC-AP.2014.6940875

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chencheng Zha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zha, C., Wang, B., Xu, W. (2023). Electromagnetic Thermal Coupled Analysis of a Multiple Three-Phase Fractional Slot Concentrated Winding Fault-Tolerant Motor. In: Cao, W., Hu, C., Chen, X. (eds) Proceedings of the 3rd International Symposium on New Energy and Electrical Technology. ISNEET 2022. Lecture Notes in Electrical Engineering, vol 1017. Springer, Singapore. https://doi.org/10.1007/978-981-99-0553-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0553-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0552-2

  • Online ISBN: 978-981-99-0553-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics